Câu hỏi:

19/07/2025 10 Lưu

Trong các mệnh đề sau đây, mệnh đề nào sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành \(ABCD\) và một điểm \(S\) không thuộc mặt phẳng \((ABCD)\), các điểm \(M,N\) lần lượt là trung điểm của đoạn thẳng \(AB,SC\). Gọi \(O = AC \cap BD\).  B. a) \(SO\) giao tuyến của hai mặt phẳng \((SAC)\) và \((SBD)\).  b) Giao điểm của \(I\) của đường thẳng \(AN\) và mặt phẳng \((SBD)\) là điểm nằm trên đường thẳng \(SO\).  c) Giao điểm của \(J\) của đường thẳng \(MN\) và mặt phẳng \((SBD)\) là điểm nằm trên đường thẳng \(SD\).  d) Ba điểm \(I,J,B\) thẳng hàng. (ảnh 1)

C. a) \(SO\) giao tuyến của hai mặt phẳng \((SAC)\) và \((SBD)\).

b) Trong mặt phẳng \((ABCD)\), gọi \(O = AC \cap BD\);

Trong mặt phẳng \((SAC)\), gọi \(I = SO \cap AN\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN}\\{I \in SO,SO \subset (SBD)}\end{array} \Rightarrow I = AN \cap (SBD)} \right.\).

c) Trong mặt phẳng \((ABCD)\), gọi \(P = CM \cap BD\);

Trong mặt phẳng \((SCM)\), gọi \(J = MN \cap SP\);

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN}\\{J \in SP,SP \subset (SBD)}\end{array} \Rightarrow J = MN \cap (SBD)} \right.\).

d) Dễ thấy \(B \in (ABN) \cap (SBD)\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN,AN \subset (ABN)}\\{I \in SO,SO \subset (SBD)}\end{array} \Rightarrow I \in (ABN) \cap (SBD)} \right.\).(2)

Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN,MN \subset (ABN)}\\{J \in SP,SP \subset (SBD)}\end{array} \Rightarrow J \in (ABN) \cap (SBD)} \right.\).(3)

Từ (1), (2), (3) suy ra \(B,I,J\) cùng thuộc giao tuyến của hai mặt phẳng \((ABN)\) và \((SBD)\) nên ba điểm này thẳng hàng.

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. M là trung điểm của SC, N là trung điểm của OB. Gọi E là giao điểm của đường thẳng SD và mặt phẳng (AMN). Tỉ số   S E S D (ảnh 1)

Trong mặt phẳng (ABCD) có J = AN

CD.

Trong mặt phẳng (SCD) có E = JM SD mà JM (AMN) nên E = SD (AMN).

Vì AB // DJ nên \(\frac{{DN}}{{NB}} = \frac{{DJ}}{{AB}} = 3\).

Trong SAD, kẻ CP // ME mà M là trung điểm SC E là trung điểm của SP.

Xét DEJ có CP // EJ nên \(\frac{{DE}}{{DP}} = \frac{{DJ}}{{DC}} = 3\) SE = EP = 2DP \(\frac{{SE}}{{SD}} = \frac{2}{5} = 0,4\).

Trả lời: 0,4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP