Câu hỏi:

19/07/2025 111 Lưu

Cho hình chóp S.ABCD có đáy là hình thang ABCD (AB // CD). Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng: D

+) Hình chóp S.ABCD có 4 mặt bên (SAB); (SBC); (SCD); (SAD).

+) S là điểm chung thứ nhất của hai mặt phẳng (SAC) và (SBD).

Lại có \(\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right)\end{array} \right.\) O là điểm chung thứ hai của hai mặt phẳng (SAC) và (SBD).

\( \Rightarrow \left( {SAC} \right) \cap \left( {SBD} \right) = SO\).

+) Tương tự (SAD) (SBC) = SI.

+) (SAB) (SAD) = SA mà SA không phải là đường trung bình của hình thang ABCD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SAC)\) và \((SBD)\).

Trong mặt phẳng \((ABCD)\), gọi \(O = AC \cap BD\).

Vì \(\left\{ {\begin{array}{*{20}{l}}{O \in AC,AC \subset (SAC)}\\{O \in BD,BD \subset (SBD)}\end{array} \Rightarrow O \in (SAC) \cap (SBD)} \right.\).

Vậy \(SO = (SAC) \cap (SBD)\).

b) Trong mặt phẳng \((SAC)\), gọi \(P = AM \cap SO\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{P \in AM}\\{P \in SO,SO \subset (SBD)}\end{array} \Rightarrow P = AM \cap (SBD)} \right.\).

Cho hình chóp   S . A B C D   với   M   là một điểm trên cạnh   S C , N   là một điểm trên cạnh   B C  . Gọi   O = A C ∩ B D   và   K = A N ∩ C D  . Khi đó:  a)   S O   là giao tuyến của hai mặt phẳng   ( S A C )   và   ( S B D )  .  b) Giao điểm của đường thẳng   A M   và mặt phẳng   ( S B D )   là điểm nằm trên cạnh   S O  .  c)   K M   là giao tuyến của hai mặt phẳng   ( A M N )   và   ( S C D )  .  d) Giao điểm của đường thẳng   S D   và mặt phẳng   ( A M N )   là điểm nằm trên cạnh   K M  . (ảnh 1)

c) Xét mặt phẳng phụ \((SCD)\) chứa \(SD\). Ta tìm giao tuyến của hai mặt phẳng \((AMN)\) và \((SCD)\).

Trong mặt phẳng \((ABCD)\), gọi \(K = AN \cap CD\).

Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{K \in AN,AN \subset (AMN)}\\{K \in CD,CD \subset (SCD)}\end{array} \Rightarrow K \in (AMN) \cap (SCD)} \right.\).

Mặt khác: \(M \in SC,SC \subset (SCD) \Rightarrow M \in (SCD) \Rightarrow M \in (SCD) \cap (AMN)\).

Vậy \(KM = (SCD) \cap (AMN)\).

d) Trong mặt phẳng \((SCD)\), gọi \(H = KM \cap SD\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{H \in SD}\\{H \in KM,KM \subset (AMN)}\end{array} \Rightarrow H = SD \cap (AMN)} \right.\).

Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Đúng.

Lời giải

Đáp án đúng: B

Trong (SAC), gọi I = AM SO mà SO (SBD) I = AM (SBD).

Vậy I là giao điểm của AM với mặt phẳng (SBD) I SO.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP