Câu hỏi:

19/08/2025 120 Lưu

Cho hàm số \(y = f\left( x \right) = \sqrt {x + 1} \).

a) Hàm số có tập xác định là \(D = \left[ { - 1; + \infty } \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Hàm số xác định khi \(x + 1 \ge 0\), tức là \(x \ge  - 1\).

Vậy tập xác định của hàm số là \(D = \left[ { - 1; + \infty } \right)\).

Câu hỏi cùng đoạn

Câu 2:

b) Điểm \(M\left( {0;1} \right)\) thuộc đồ thị hàm số.

Xem lời giải

verified Giải bởi Vietjack

b) Đúng. Vì \(0 \in D\) và \(1 = \sqrt {0 + 1} \) nên \(M\left( {0;1} \right)\) thuộc đồ thị hàm số.

Câu 3:

c) \(f\left( 1 \right) + f\left( 3 \right) = 5\).

Xem lời giải

verified Giải bởi Vietjack

c) Sai. Vì \(f\left( 1 \right) + f\left( 3 \right) = \sqrt 2  + 2 \ne 5\).

Câu 4:

d) Hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).

Xem lời giải

verified Giải bởi Vietjack

d) Sai. Xét hàm số \(y = f\left( x \right) = \sqrt {x + 1} \) trên khoảng \(\left( {0; + \infty } \right)\).

\(\forall {x_1},{x_2} \in \left( {0; + \infty } \right)\), \({x_1} < {x_2},\) ta có:

\(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \sqrt {{x_1} + 1}  - \sqrt {{x_2} + 1}  = \frac{{{x_1} + 1 - \left( {{x_2} + 1} \right)}}{{\sqrt {{x_1} + 1}  + \sqrt {{x_2} + 1} }} = \frac{{{x_1} - {x_2}}}{{\sqrt {{x_1} + 1}  + \sqrt {{x_2} + 1} }} < 0\).

Suy ra \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).

Vậy hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có y=3x+5x14=3x+54x1x1=x+9x1.
Điều kiện xác định: x10x+9x10x+90x1>0x+90x1<0x9x>1  TMx9x<1  L1<x9

Suy ra tập xác định của hàm số là \(D = \left( {1;9} \right]\).

Vậy \(a = 1,\,b = 9 \Rightarrow a + b = 10.\)

Đáp án: \(10\).

Lời giải

Đáp án đúng là: B

Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm hay \(\Delta ' = m + 4 < 0 \Leftrightarrow m <  - 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP