Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {\cos ^2}\frac{x}{2}\)
Quảng cáo
Trả lời:
Chọn B
B. Ta có:\(f\left( x \right) = {\cos ^2}\frac{x}{2} \Rightarrow F\left( x \right) = \int {{{\cos }^2}\frac{x}{2}dx} = \int {\frac{{1 + \cos x}}{2}dx} = \frac{1}{2}\int {\left( {1 + \cos x} \right)dx} = \frac{1}{2}\left( {1 + \sin x} \right) + C\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
\(\int {\sqrt {x\sqrt {x\sqrt x } } dx} = \int {\sqrt {x\sqrt {x.{x^{\frac{1}{2}}}} } dx} = \int {\sqrt {x.{x^{\frac{3}{4}}}} dx} = \int {{x^{\frac{7}{8}}}dx} = \frac{{{x^{\frac{7}{8} + 1}}}}{{\frac{7}{8} + 1}} + C = \frac{8}{{15}}x\sqrt[{15}]{{{x^7}}} + C\)
Lời giải
Ta có:\(\int {f\left( x \right)} dx = \int {{x^{\frac{3}{2}}}} dx = \frac{2}{5}{x^{\frac{5}{2}}} + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.