Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}2x - 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\3{x^2} - 2{\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\], giả sử \[F\] là nguyên hàm của \[f\] trên \[\mathbb{R}\] thỏa mãn \[F\left( 0 \right) = 2\].Giá trị của \[F\left( { - 1} \right) + 2F\left( 2 \right)\] bằng.
Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}2x - 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\3{x^2} - 2{\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\], giả sử \[F\] là nguyên hàm của \[f\] trên \[\mathbb{R}\] thỏa mãn \[F\left( 0 \right) = 2\].Giá trị của \[F\left( { - 1} \right) + 2F\left( 2 \right)\] bằng.
Quảng cáo
Trả lời:
Chọn A
Ta có:
\[\int {\left( {2x - 1} \right){\rm{d}}x = {x^2} - x + {c_1}} \];
\[\int {\left( {3{x^2} - 2} \right){\rm{d}}x} = {x^3} - 2x + {c_2}\]
Suy ra \[F\left( x \right) = \int {f\left( x \right){\rm{d}}x = } \left\{ \begin{array}{l}{x^2} - x + {C_1}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\{x^3} - 2x + {C_2}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\]
Mà ta có \[F\left( 0 \right) = 2 \Rightarrow {C_2} = 2\]
Mặt khác hàm số \[F\] là nguyên hàm của \[f\] trên \[\mathbb{R}\] nên \[y = F\left( x \right)\] liên tục tại \[x = 1\]
Suy ra \[\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) \Rightarrow {C_1} = 1\].
Khi đó ta có: \[F\left( x \right) = \left\{ \begin{array}{l}{x^2} - x + 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x \ge 1\\{x^3} - 2x + 2{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & {\rm{khi}}{\kern 1pt} {\kern 1pt} {\kern 1pt} x < 1\end{array} \right.\] suy ra \[\left\{ \begin{array}{l}F\left( { - 1} \right) = 3\\F\left( 2 \right) = 3\end{array} \right..\]
Vậy \[F\left( { - 1} \right) + 2F\left( 2 \right) = 9\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Cách 1: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = \int {{{\left( {{3^{ - 1}}} \right)}^x}{\rm{d}}(x)} = \frac{{{3^{ - x}}}}{{\ln {3^{ - 1}}}} + C = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\)
Cách 2: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\).
Lời giải
Chọn D
Ta có:
\(v\left( t \right) = 3{t^2} + 5\)
\( \Rightarrow s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {3{t^2} + 5} \right)} dt = {t^3} + 5t + C\)
\( \Rightarrow s\left( t \right) = {t^3} + 5t + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\) \( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = {t^3} + 5t\)
Quãng đường máy bay bay từ giây thứ 4 là: \(s\left( 4 \right) = {4^3} + 5.4 = 84m\)
Quãng đường máy bay bay từ giây thứ 10 là: \(s\left( {10} \right) = {10^3} + 5.10 = 1050m\)
Quãng đường máy bay bay từ giây thứ 4 đến giây thứ 10 là: \[s\left( {10} \right) - s\left( 4 \right) = 966m\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.