Quảng cáo
Trả lời:
Chọn C
Ta có: \[\int {\left( {{e^x} + {e^{ - 2x}}} \right){\rm{d}}x} = \int {{e^x}{\rm{d}}x} + \int {{e^{ - 2x}}{\rm{d}}x} = \int {{e^x}{\rm{d}}x} - \frac{1}{2}\int {{e^{ - 2x}}{\rm{d}}\left( { - 2x} \right)} = {e^x} - \frac{1}{2}{e^{ - 2x}} + C\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Cách 1: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = \int {{{\left( {{3^{ - 1}}} \right)}^x}{\rm{d}}(x)} = \frac{{{3^{ - x}}}}{{\ln {3^{ - 1}}}} + C = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\)
Cách 2: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\).
Lời giải
Chọn C
Ta có :
\(h'\left( t \right) = 10t + 500\)
\( \Rightarrow h\left( t \right) = \int {\left( {10t + 500} \right)} dx = 5{t^2} + 500t + C\)
\( \Rightarrow h\left( t \right) = 5{t^2} + 500t + C\)
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\( \Rightarrow h\left( t \right) = 5{t^2} + 500t\)
thủy điện đã xả lũ trong 40 phút = 2400 giây thì thoát đi một lượng nước là:
\(h\left( {2400} \right) = {5.2400^2} + 500.2400 = {3.10^3}\left( {{m^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.