Câu hỏi:

24/07/2025 15 Lưu

Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}2x + 2\,\,\,\,\,\,\,khi\,\,\,x \ge 1\\3{x^2} + 1\,\,\,\,\,khi\,\,\,x < 1\end{array} \right.\]. Giả sử \[F\] là nguyên hàm của \[f\] trên \[\mathbb{R}\] thỏa mãn \[F\left( 0 \right) = 2\]. Giá trị của \[F\left( { - 1} \right) + 2F\left( 2 \right)\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

\[F\] là nguyên hàm của \[f\] trên \[\mathbb{R}\] nên \[F\left( x \right) = \left\{ \begin{array}{l}{x^2} + 2x + {C_1}\,\,\,\,\,\,khi\,\,\,x \ge 1\\{x^3} + x + {C_2}\,\,\,\,\,\,\,\,khi\,\,\,x < 1\end{array} \right.\].

Ta có: \[F\left( 0 \right) = 2 \Rightarrow {C_2} = 2\]. \(\left( 1 \right)\)

Do \[F\] liên tục tại \[x = 1\] nên \[\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = F\left( 1 \right)\]

\[ \Leftrightarrow {C_1} + 3 = {C_2} + 2\mathop \Leftrightarrow \limits^{\left( 1 \right)} {C_1} + 3 = 4 \Leftrightarrow {C_1} = 1\].

Do đó \[F\left( x \right) = \left\{ \begin{array}{l}{x^2} + 2x + 1\,\,\,\,\,\,khi\,\,\,x \ge 1\\{x^3} + x + 2\,\,\,\,\,\,\,\,khi\,\,\,x < 1\end{array} \right.\].

Suy ra \[F\left( { - 1} \right) + 2F\left( 2 \right) = 18\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Ta có :

\(h'\left( t \right) = 10t + 500\)

\( \Rightarrow h\left( t \right) = \int {\left( {10t + 500} \right)} dx = 5{t^2} + 500t + C\)

\( \Rightarrow h\left( t \right) = 5{t^2} + 500t + C\)

Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)

\( \Rightarrow h\left( t \right) = 5{t^2} + 500t\)

thủy điện đã xả lũ trong 40 phút = 2400 giây thì thoát đi một lượng nước là:

\(h\left( {2400} \right) = {5.2400^2} + 500.2400 = {3.10^3}\left( {{m^3}} \right)\)

Câu 2

Lời giải

Chọn A

Cách 1: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = \int {{{\left( {{3^{ - 1}}} \right)}^x}{\rm{d}}(x)} = \frac{{{3^{ - x}}}}{{\ln {3^{ - 1}}}} + C = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\)

Cách 2: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP