Câu hỏi:

24/07/2025 11 Lưu

Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F\left( 0 \right) = \frac{3}{2}\). Tìm \(F\left( x \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Ta có \(F\left( x \right) = \int {\left( {{e^x} + 2x} \right){\rm{d}}x} = {e^x} + {x^2} + C\)

Theo bài ra ta có: \(F\left( 0 \right) = 1 + C = \frac{3}{2} \Rightarrow C = \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Ta có :

\(h'\left( t \right) = 10t + 500\)

\( \Rightarrow h\left( t \right) = \int {\left( {10t + 500} \right)} dx = 5{t^2} + 500t + C\)

\( \Rightarrow h\left( t \right) = 5{t^2} + 500t + C\)

Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)

\( \Rightarrow h\left( t \right) = 5{t^2} + 500t\)

thủy điện đã xả lũ trong 40 phút = 2400 giây thì thoát đi một lượng nước là:

\(h\left( {2400} \right) = {5.2400^2} + 500.2400 = {3.10^3}\left( {{m^3}} \right)\)

Câu 2

Lời giải

Chọn A

Cách 1: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = \int {{{\left( {{3^{ - 1}}} \right)}^x}{\rm{d}}(x)} = \frac{{{3^{ - x}}}}{{\ln {3^{ - 1}}}} + C = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\)

Cách 2: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP