Cho hàm số \(F(x) = {x^3} - 2x + 1\), \(x \in \mathbb{R}\) là một nguyên hàm của hàm số \(f(x)\).
a) Nếu hàm số \(G(x)\) cũng là một nguyên hàm của hàm số \(f(x)\)và \(G( - 1) = 3\) thì \[G\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Cho hàm số \(F(x) = {x^3} - 2x + 1\), \(x \in \mathbb{R}\) là một nguyên hàm của hàm số \(f(x)\).
a) Nếu hàm số \(G(x)\) cũng là một nguyên hàm của hàm số \(f(x)\)và \(G( - 1) = 3\) thì \[G\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Câu hỏi trong đề: (Đúng sai) 16 bài tập Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
a) Vì \(G(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(G(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(G( - 1) = 3\)nên ta có \[G( - 1) = F( - 1) + C \Leftrightarrow 3 = 2 + C \Leftrightarrow C = 1\]. Vậy \[G\left( x \right) = F\left( x \right) + 1\],\(x \in \mathbb{R}\).
Suy ra Sai.
Câu hỏi cùng đoạn
Câu 2:
b) Nếu hàm số\(H(x)\) cũng là một nguyên hàm của hàm số\(f(x)\) và \(H(1) = - 3\)thì\[H\left( x \right) = F\left( x \right) - 3\],\(x \in \mathbb{R}\).
Lời giải của GV VietJack
b) Vì \(H(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(H(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(H(1) = - 3\)nên ta có \[H(1) = F(1) + C \Leftrightarrow - 3 = 0 + C \Leftrightarrow C = - 3\]. Vậy \[H\left( x \right) = F\left( x \right) - 3\],\(x \in \mathbb{R}\).
Suy ra đúng.
Câu 3:
c) Nếu hàm số\(K(x)\) cũng là một nguyên hàm của hàm số \(f(x)\)và \(K(0) = 0\) thì \[K\left( x \right) = F\left( x \right) + 1\],\(x \in \mathbb{R}\).
c) Nếu hàm số\(K(x)\) cũng là một nguyên hàm của hàm số \(f(x)\)và \(K(0) = 0\) thì \[K\left( x \right) = F\left( x \right) + 1\],\(x \in \mathbb{R}\).
Lời giải của GV VietJack
c) Vì \(K(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(K(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(K(0) = 0\)nên ta có \[K(0) = F(0) + C \Leftrightarrow 0 = 1 + C \Leftrightarrow C = - 1\]. Vậy \[K\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Suy ra Sai.
Câu 4:
d) Nếu hàm số\(M(x)\)cũng là một nguyên hàm của hàm số\(f(x)\)và \(M(2) = 4\) thì \[M\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
d) Nếu hàm số\(M(x)\)cũng là một nguyên hàm của hàm số\(f(x)\)và \(M(2) = 4\) thì \[M\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Lời giải của GV VietJack
d) Vì \(M(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(M(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(M(2) = 4\)nên ta có \[M(2) = F(2) + C \Leftrightarrow 4 = 5 + C \Leftrightarrow C = - 1\]. Vậy \[M\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Suy ra Đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a- Đúng
\[\int {\left( {2 + {{\cot }^2}x} \right)dx} = \int {\left( {1 + 1 + {{\cot }^2}x} \right)dx} = \int {\left( {1 + \frac{1}{{{{\sin }^2}x}}} \right)dx} = x - \cot x + C\]
Lời giải
Vì \(s(t)\), \(v(t)\) lần lượt là phương trình quãng đường và phương trình vận tốc của chuyển động đó theo thời gian \(t\) (giây) nên ta có \(s'(t) = v(t)\) và \(\int v (t){\rm{dt}} = s(t) + C\).
a) \(\int s (t){\rm{dt}} = v(t) + C\) . Suy ra Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.