Gọi \(h(t)\)là chiều cao của cây keo (tính theo mét) sau khi trồng \(t\) năm. Biết rằng năm đầu tiên cây cao 1,5m, trong những năm tiếp theo, cây phát triển với tốc độ \(h'(t) = \frac{1}{{\sqrt[4]{t}}}\) (mét /năm). Sau bao nhiêu năm cây cao được 3m.
Trả lời: ………………………….
Gọi \(h(t)\)là chiều cao của cây keo (tính theo mét) sau khi trồng \(t\) năm. Biết rằng năm đầu tiên cây cao 1,5m, trong những năm tiếp theo, cây phát triển với tốc độ \(h'(t) = \frac{1}{{\sqrt[4]{t}}}\) (mét /năm). Sau bao nhiêu năm cây cao được 3m.
Trả lời: ………………………….
Câu hỏi trong đề: (Trả lời ngắn) 22 bài tập Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
Ta có: \(h'(t) = \frac{1}{{\sqrt[4]{t}}}\)\( \Rightarrow h(t) = \int {\frac{1}{{\sqrt[4]{t}}}} dt = \int {{t^{ - \frac{1}{4}}}} dt = \frac{{{t^{ - \frac{1}{4} + 1}}}}{{^{ - \frac{1}{4} + 1}}} + C = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)
năm đầu tiên cây cao 1m nên \(h(1) = 1,5 \Leftrightarrow 1,5 = \frac{4}{3}\sqrt[4]{1} + C \Rightarrow C = \frac{1}{6}\)
\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6}\)
cây cao được 3m nên \(h(t) = 3 \Leftrightarrow \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6} = 3 \Leftrightarrow \sqrt[4]{{{t^3}}} = \frac{{17}}{8} \Rightarrow t \approx 2,73\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có :
\(h'\left( t \right) = 3a{t^2} + bt\)
\[ \Rightarrow h\left( t \right) = \int {\left( {3a{t^2} + bt} \right)} dt = a{t^3} + \frac{1}{2}b{t^2} + C\]
\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2} + C\]
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2}\]
Sau 5 giây thì thể tích nước trong bể là : \[h\left( 5 \right) = 150 \Leftrightarrow 125a + \frac{{25}}{2}b = 150\]
Sau 10 giây thì thể tích nước trong bể là :\[h\left( {10} \right) = 1100 \Leftrightarrow 1000a + 50b = 1100\]
Ta có hệ : \[\left\{ \begin{array}{l}125a + \frac{{25}}{2}b = 150\\1000a + 50b = 1100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\]
\[ \Rightarrow h\left( t \right) = {t^3} + {t^2}\]
thể tích nước trong bể sau khi bơm được 20 giây là \[h\left( {20} \right) = {20^3} + {20^2} = 8400{m^3}\]
Lời giải
Trả lời: 11
Ta có: \(h\left( t \right) = \int {v\left( t \right){\rm{d}}t} = \int {\left( { - 9,81t + 29,43} \right){\rm{d}}t} = - \frac{{9,81}}{2}{t^2} + 29,43t + C\).
Vì vật được ném lên từ độ cao 300 m nên \(h\left( 0 \right) = 300 \Rightarrow C = 300\).
Vậy \(h\left( t \right) = - \frac{{9,81}}{2}{t^2} + 29,43t + 300\). Khi vật bắt đầu chạm đất ứng với \(h\left( t \right) = 0\).
Nên ta có: \( - \frac{{9,81}}{2}{t^2} + 29,43t + 300 = 0 \Leftrightarrow t \approx 11\) hoặc \(t \approx - 5\).
Do \(t > 0\) nên \(t \approx 11\,\left( {\rm{s}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.