Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn , sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày \[\left( {0 \le t \le 10} \right)\]. Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số \[P'(t) = k\sqrt t \], trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng thành 600 vi khuẩn. Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị)
Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn , sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày \[\left( {0 \le t \le 10} \right)\]. Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số \[P'(t) = k\sqrt t \], trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng thành 600 vi khuẩn. Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị)
Quảng cáo
Trả lời:

Hàm số \({\rm{P}}({\rm{t}})\) là một nguyên hàm của hàm số P ( t ).
Ta có \(\int {{P^\prime }} (t)dt = \int k \sqrt t dt = k\int {{t^{\frac{1}{2}}}} dt = \frac{{2k}}{3} \cdot {t^{\frac{3}{2}}} + C = \frac{{2k}}{3}t\sqrt t + C\).
Suy ra \(P(t) = \frac{{2k}}{3}t\sqrt t + C\).
Quần thể vi khuẩn ban đầu gồm 500 vi khuẩn nên với \({\rm{t}} = 0\) thì \({\rm{P}} = 500\) hay \({\rm{P}}(0)\) \( = 500\), suy ra \(\frac{{2k}}{3} \cdot 0 \cdot \sqrt 0 + C = 500\), do đó \({\rm{C}} = 500\). Suy ra \(P(t) = \frac{{2k}}{3}t\sqrt t + 500\).
Vi sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn, tức là khi \({\rm{t}} = 1\) thì \({\rm{P}} = 600\), hay \({\rm{P}}(1) = 600\), suy ra \(\frac{{2k}}{3} \cdot 1 \cdot \sqrt 1 + 500 = 600\), do đó \({\rm{k}} = 150\).
Khi đó, công thức tính số lượng vi khuẩn của quần thể đó tại thời điểm t là:
\(P(t) = \frac{{2 \cdot 150}}{3}t\sqrt t + 500 = 100t\sqrt t + 500\quad (0 \le t \le 10){\rm{. }}\)
Vậy số lượng vi khuẩn của quần thể đó sau 7 ngày là:
\(P(7) = 100 \cdot 7\sqrt 7 + 500 \approx 2352{\rm{ (vi khuan)}}{\rm{. }}\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có:
\(\begin{array}{l}\int {{h^\prime }} (t){\rm{d}}t = \int {\frac{1}{{216}}} \left( {5{t^2} - 120t + 480} \right){\rm{d}}t = \frac{1}{{216}}\int {\left( {5{t^2} - 120t + 480} \right)} {\rm{d}}t = \frac{5}{{216}}\int {{t^2}} \;{\rm{d}}t - \frac{{120}}{{216}}\int t \;{\rm{d}}t + \frac{{480}}{{216}}\int {\rm{d}} t\\ = \frac{5}{{648}}{t^3} - \frac{5}{{18}}{t^2} + \frac{{20}}{9}t + C\end{array}\)
Suy ra \(h(t) = \frac{5}{{648}}{t^3} - \frac{5}{{18}}{t^2} + \frac{{20}}{9}t + C\).
Tại thời điểm \(t = 0\), mực nước trong hồ chứa là \(6\;{\rm{m}}\) nên \(h(0) = 6\), suy ra \(C = 6\).
Vậy mực nước trong hồ chứa được cho bởi hàm số: \(h(t) = \frac{5}{{648}}{t^3} - \frac{5}{{18}}{t^2} + \frac{{20}}{9}t + 6(0 \le t \le 24)\)
b) Ta tìm \({\min _{[0;24]}}h(t)\) và \({\max _{[0;24]}}h(t)\).
- \({h^\prime }(t) = 0 \Leftrightarrow 5{t^2} - 120t + 480 = 0\)
\( \Leftrightarrow {t^2} - 24t + 96 = 0 \Leftrightarrow t = 12 - 4\sqrt 3 \) hoă̆c \(t = 12 + 4\sqrt 3 \).
- Bảng biến thiên:

Do đó, ta có: \({\min _{[0;24]}}h(t) = \min \{ h(0);h(12 + 4\sqrt 3 )\} = h(12 + 4\sqrt 3 ) \approx 0,9\);
\({\max _{[0;24]}}h(t) = \max \{ h(24);h(12 - 4\sqrt 3 )\} = h(12 - 4\sqrt 3 ) \approx 11,1\)
Vậy mực nước trong hồ chứa cao nhất khoảng \(11,1\;{\rm{m}}\) và thấp nhất khoảng \(0,9\;{\rm{m}}\).
c) Ta tìm \({\max _{[0;24]}}{h^\prime }(t)\).
- \({h^{\prime \prime }}(t) = \frac{1}{{216}}(10t - 120)\);
\({h^{\prime \prime }}(t) = 0{\rm{ khi }}t = 12.{\rm{ }}\)
- Bảng biến thiên của hàm số \({h^\prime }(t)\) :

Do đó, ta có: \({\max _{[0;24]}}{h^\prime }(t) = \max \left\{ {{h^\prime }(0);{h^\prime }(24)} \right\} = {h^\prime }(24) = \frac{{20}}{9}\).
Vậy mực nước trong hồ chứa thay đổi nhanh nhất khi \(t = 0\) và \(t = 24\). Tốc độ thay đổi của mực nước trong hồ chứa khi đó là \(\frac{{20}}{9}\;{\rm{m}}/{\rm{h}}\).
Lời giải
a) Hàm số h(t) là một nguyên hàm của hàm số \(v({\rm{t}})\).
Ta có: \(\int v (t)dt = \int {\left( { - 0,1{t^3} + {t^2}} \right)} dt = - 0,1\int {{t^3}} dt + \int {{t^2}} dt = - 0,025{t^4} + \frac{{{t^3}}}{3} + C\)
Suy ra \(h(t) = - 0,025{t^4} + \frac{{{t^3}}}{3} + C\).
Vi cây cà chua khi trồng có chiều cao 5 cm nên \({\rm{h}}(0) = 5\), suy ra \({\rm{C}} = 5\).
Vậy công thức xác định hàm số h(t) là: \(h(t) = - 0,025{t^4} + \frac{{{t^3}}}{3} + 5(t \ge 0)\).
b) Xét hàm số \(h(t) = - 0,025{t^4} + \frac{{{t^3}}}{3} + 5(t \ge 0)\).
Ta có \(h(t) = v(t) = - 0,1{t^3} + {t^2};h(t) = 0\) khi \(t = 0\) hoặc \({\rm{t}} = 10\).
Bảng biến thiên của hàm số \(h(t)\) trên \([0; + \infty )\) như sau:

Từ bảng biến thiên ta thấy giai đoạn tăng trưởng của cây cà chua đó kéo dài 10 tuần.
c) Từ bảng biến thiên ở câu b, ta thấy chiều cao tối đa của cây cà chua đó là \(\frac{{265}}{3}\) cm .
d) Xét hàm tốc độ tăng chiều cao của cây cà chua: \(v(t) = - 0,1{t^3} + {t^2}(t \ge 0)\).
Ta có \({v^{\prime \prime }}({\rm{t}}) = - 0,3{{\rm{t}}^2} + 2{\rm{t}};{\rm{v}}\) (t) \( = 0\) khi \({\rm{t}} = 0\) hoặc \({\rm{t}} = \frac{{20}}{3}\).
Bảng biến thiên của hàm số \(v(t)\) trên \([0; + \infty )\) như sau:

Từ bảng biến thiên ta suy ra vào thời điểm cây cà chua đó phát triển nhanh nhất thì cây cà chua cao \(\frac{{400}}{{27}}\;{\rm{cm}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.