Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn , sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày \[\left( {0 \le t \le 10} \right)\]. Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số \[P'(t) = k\sqrt t \], trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng thành 600 vi khuẩn. Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị)
Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn , sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày \[\left( {0 \le t \le 10} \right)\]. Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số \[P'(t) = k\sqrt t \], trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng thành 600 vi khuẩn. Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị)
Quảng cáo
Trả lời:
Hàm số \({\rm{P}}({\rm{t}})\) là một nguyên hàm của hàm số P ( t ).
Ta có \(\int {{P^\prime }} (t)dt = \int k \sqrt t dt = k\int {{t^{\frac{1}{2}}}} dt = \frac{{2k}}{3} \cdot {t^{\frac{3}{2}}} + C = \frac{{2k}}{3}t\sqrt t + C\).
Suy ra \(P(t) = \frac{{2k}}{3}t\sqrt t + C\).
Quần thể vi khuẩn ban đầu gồm 500 vi khuẩn nên với \({\rm{t}} = 0\) thì \({\rm{P}} = 500\) hay \({\rm{P}}(0)\) \( = 500\), suy ra \(\frac{{2k}}{3} \cdot 0 \cdot \sqrt 0 + C = 500\), do đó \({\rm{C}} = 500\). Suy ra \(P(t) = \frac{{2k}}{3}t\sqrt t + 500\).
Vi sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn, tức là khi \({\rm{t}} = 1\) thì \({\rm{P}} = 600\), hay \({\rm{P}}(1) = 600\), suy ra \(\frac{{2k}}{3} \cdot 1 \cdot \sqrt 1 + 500 = 600\), do đó \({\rm{k}} = 150\).
Khi đó, công thức tính số lượng vi khuẩn của quần thể đó tại thời điểm t là:
\(P(t) = \frac{{2 \cdot 150}}{3}t\sqrt t + 500 = 100t\sqrt t + 500\quad (0 \le t \le 10){\rm{. }}\)
Vậy số lượng vi khuẩn của quần thể đó sau 7 ngày là:
\(P(7) = 100 \cdot 7\sqrt 7 + 500 \approx 2352{\rm{ (vi khuan)}}{\rm{. }}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).
Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.
Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.
Suy ra C = 24,5.
Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.
b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:
t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Lời giải
Hàm số \(M(t)\) là một nguyên hàm của hàm số \(m(t)\).
Ta có \(\int m (t)dt = \int {(800 - 2t)} dt = \int 8 00dt - \int 2 tdt = 800t - {t^2} + C\).
Suy ra \(M(t) = 800t - {t^2} + C\).
Tại \({\rm{t}} = 0\) thì \({\rm{M}}({\rm{t}}) = {\rm{M}}(0) = 0\).
Do đó \(800 \cdot 0 - {0^2} + C = 0\), suy ra \(C = 0\).
Khi đó, \(M({\rm{t}}) = 800{\rm{t}} - {{\rm{t}}^2}(0 \le {\rm{t}} \le 400)\).
Số ngày công tính đến khi hoàn thành dự án là
\(M(400) = 800 \cdot 400 - {400^2} = 160000\) (ngày công).
Chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành dự án) là
\(160000 \cdot 400000 = 6,4 \cdot {10^{10}}\) (đồng) \( = 64\) (tỷ đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.