Nhân ngày Quốc tế Thiếu nhi ngày 01 tháng 06, một rạp chiếu phim phục vụ các khán giả một bộ phim hoạt hình. Vé được bán ra có hai
loại:

Quảng cáo
Trả lời:
Gọi \(x\) là số lượng vé loại 1 bán được \(\left( {x \in \mathbb{N}} \right)\) và \(y\) là số lượng vé loại 2 bán được \(\left( {y \in \mathbb{N}} \right)\) thì số tiền bán vé thu được là \(50x + 100y\) (nghìn đồng).
Người ta sẽ phải bù lỗ trong trường hợp số tiền bán vé nhỏ hơn 20 triệu đồng, tức là:
\(50x + 100y < 20000\) hay \(x + 2y < 400\).
Như vậy, việc giải quyết bài toán mở đầu dẫn đến việc đi tìm miền nghiệm của bất phương trình \(x + 2y < 400\).
Miền nghiệm của bất phương trình bậc nhất hai ẩn này được xác định như sau:
Vẽ đường thẳng \(d:x + 2y = 400\). Ta lấy gốc tọa độ \(O\left( {0\,;\,0} \right)\) và tính \(0 + 2.0 = 0 < 400\).
Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ \(d\) chứa gốc toạ độ không kể đường thẳng \(d\). Vậy nếu bán được số vé loại 1 là \(x\) và số vé loại 2 là \(y\) mà điểm \(\left( {x;y} \right)\) nằm trong miền tam giác \(OAB\) không hề cạnh \(AB\) thì rạp chiếu phim sẽ phải bù lỗ.
Nếu điểm \(\left( {x;y} \right)\) nằm trên đoạn thẳng \(AB\) thì rạp chiếu phim hoà vốn.

Nếu bán được 150 vé loại 1 và 150 vé loại 2 thì rạp chiếu phim có lãi.
Nếu bán được 200 vé loại 1 và 100 vé loại 2 thì rạp chiếu phim hoà vốn.
Nếu bán được 100 vé loại 1 và 100 vé loại 2 thì rạp chiếu phim phải bù lỗ.
a) Đúng. Người ta sẽ phải bù lỗ trong trường hợp số tiền bán vé thoả mãn bất phương trình \(x + 2y < 400\).
b) Sai. Nếu bán được 200 vé loại 1 và 100 vé loại 2 thì rạp chiếu phim hoà vốn.
c) Đúng. Nếu bán được 200 vé loại 1 và 100 vé loại 2 thì rạp chiếu phim hoà vốn.
d) Sai. Nếu bán được 100 vé loại 1 và 100 vé loại 2 thì rạp chiếu phim phải bù lỗ.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bất phương trình biểu diễn số tập và bút có thể mua được phụ thuộc vào số tiền mang theo là \(8000x + 6000y \le 150000\).
Bạn Lan có thể mua được tối đa số quyển tập nếu bạn đã mua 10 cây bút là \(8000x + 6000.10 \le 150000 \Leftrightarrow x \le 11,25\).
Vì \(x\) nguyên dương nên số quyển tập tối đa bạn Lan mua được là 11 quyển.
Đáp án: 11.
Lời giải
a) Đúng. Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ .\(B\). là \(y\).
b) Sai. Với \(x,y \in \mathbb{N}\), ta có bất phương trình: \(3x - y \ge 20\,\,\,\,\,\left( * \right)\).
c) Đúng. Thay cặp số \(\left( {7\,;\,1} \right)\) vào bất phương trình \(\left( * \right):3.7 - 1 \ge 20\) (đúng) suy ra \(\left( {7\,;\,1} \right)\) là một nghiệm của \(\left( * \right)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
d) Sai. Thay cặp số \(\left( {8\,;\,4} \right)\) vào bất phương trình \(\left( * \right):3.8 - 4 \ge 20\) (đúng) suy ra \(\left( {8\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 4 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.