Câu hỏi:

23/07/2025 162 Lưu

Cho bất phương trình \(2x + 3y - 10 \le 0\). Hỏi có bao nhiêu cặp số nguyên \(\left( {{m_0}\,;\,{n_0}} \right)\) thoả mãn \(\left({m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình \(2x + 3y - 10 \le 0\) nên ta có:

\(2m_0^2 + 3n_0^2 \le 10 \Rightarrow \left\{ \begin{array}{l}m_0^2 \le 5\\n_0^2 \le \frac{{10}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - \sqrt 5 \le {m_0} \le \sqrt 5 \\ - \sqrt {\frac{{10}}{3}} \le {n_0} \le \sqrt {\frac{{10}}{3}} \end{array} \right.\) do \({m_0},{n_0} \in \mathbb{Z} \Rightarrow \left\{ \begin{array}{l}{m_0} \in \left\{ { - 2; - 1;0;1;2} \right\}\\{n_0} \in \left\{ { - 1;0;1} \right\}\end{array} \right.\).

Thử lại ta loại các bộ \[\left( {2; - 1} \right);\left( {2;1} \right),\left( { - 2;1} \right),\left( { - 2; - 1} \right)\;\].

Vậy có 11 cặp số \(\left( {{m_0}\,;\,{n_0}} \right)\) sao cho \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho.

Đáp án: 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\), \(y\) lần lượt là số xe loại \(A\) và loại \(B\) cần nhập ( \(x,y \in \mathbb{N}\)).

Tổng số tiền nhập xe là: \(30000000x + 50000000y\) đồng.

Số tiền dùng để nhập xe không quá 4 tỉ đồng, tức là:

\[30000000x + 50000000y \le 4000000000 \Leftrightarrow 3x + 5y \le 400\,\left( * \right)\].

Thay \(x = 70,y = 40\) vào bất phương trình \[\left( * \right)\] ta có: \[410 \le 400\] (vô lý).

Thay \(x = 73,y = 37\) vào bất phương trình \[\left( * \right)\] ta có: \[404 \le 400\] (vô lý).

Thay \(x = 78,y = 32\) vào bất phương trình \[\left( * \right)\] ta có: \[394 \le 400\] (đúng).

Thay \(x = 67,y = 43\) vào bất phương trình \[\left( * \right)\] ta có: \[416 \le 400\] (vô lý).

Vậy trong trường hợp cửa hàng nhập \(78\) xe loại \(A\) và \(32\) xe loại \(B\) thì số tiền dùng để nhập xe không quá 4 tỉ đồng.

Vậy \(m = 78\,;\,\,n = 32 \Rightarrow m + n = 78 + 32 = 110\).

Đáp án: 110.

Lời giải

Bất phương trình biểu diễn số tập và bút có thể mua được phụ thuộc vào số tiền mang theo là \(8000x + 6000y \le 150000\).

Bạn Lan có thể mua được tối đa số quyển tập nếu bạn đã mua 10 cây bút là \(8000x + 6000.10 \le 150000 \Leftrightarrow x \le 11,25\).

Vì \(x\) nguyên dương nên số quyển tập tối đa bạn Lan mua được là 11 quyển.

Đáp án: 11.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP