Câu hỏi:

24/07/2025 12 Lưu

Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là \[v(t) = {t^2} - t - 6\] (m/s).

a) Tìm độ dịch chuyển của vật trong khoảng thời gian \[1 \le t \le 4\], tức là tính \[\int\limits_1^4 {v(t)dt} \].

b) Tìm tổng quãng đường vật đi được trong khoảng thời gian này, tức là tính \[\int\limits_1^4 {\left| {v(t)} \right|dt} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử vật chuyển động trên một trục nằm ngang, chiểu dương hướng từ trái sang phải.

a) Ta có \(\int_1^4 v (t){\rm{d}}t = \int_1^4 {\left( {{t^2} - t - 6} \right)} {\rm{d}}t = \left. {\left( {\frac{1}{3}{t^3} - \frac{1}{2}{t^2} - 6t} \right)} \right|_1^4 =  - \frac{9}{2}\).

Vậy trong khoảng thời gian \(1 \le t \le 4\), vật dịch chuyển sang bên trái được \(4,5\;{\rm{m}}\) so với vị trí tại thời điểm \(t = 1\) (giây) (Trong quá trình chuyển động, lúc thì vật đi sang trái, lúc thì đi sang phải, nhưng tại thời điểm \(t = 4\) (giây) thì vật có vị trí nằm ở phía bên trái và cách vị trí của vật tại thời điểm \(t = 1\) (giây) một khoảng là \(4,5\;{\rm{m}}\) ).

b) Ta có

\[\begin{array}{l}\int_1^4 | v(t)|{\rm{d}}t = \int_1^4 {\left| {{t^2} - t - 6} \right|} {\rm{d}}t = \int_1^3 {\left| {{t^2} - t - 6} \right|} {\rm{d}}t + \int_3^4 {\left| {{t^2} - t - 6} \right|} {\rm{d}}t = \int_1^3 {\left( { - {t^2} + t + 6} \right)} {\rm{d}}t + \int_3^4 {\left( {{t^2} - t - 6} \right)} {\rm{d}}t\\ = \left. {\left( {\frac{{ - 1}}{3}{t^3} + \frac{1}{2}{t^2} + 6t} \right)} \right|_1^3 + \left. {\left( {\frac{1}{3}{t^3} - \frac{1}{2}{t^2} - 6t} \right)} \right|_3^4 = \frac{{22}}{3} + \frac{{17}}{6} = \frac{{61}}{6}.\end{array}\]

Vậy tổng quãng đường vật đi được trong khoảng thời gian \(1 \le t \le 4\) (giây) (tính cả quãng đường lúc đi sang trái, quãng đường lúc đi sang phải) là \(\frac{{61}}{6}\;{\rm{m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)     \[s = \int\limits_0^4 {v(t)dt} = \int\limits_0^4 {\left( {20 - 5t} \right)dt} = 40{\rm{ }}(m)\]

b) \[{v_{tb}} = \frac{1}{{b - a}}\int_a^b {v(t)dt} = \frac{1}{{4 - 0}}\int_0^4 {\left( {20 - 5t} \right)dt} = 10{\rm{ }}(m/s)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP