Câu hỏi:

24/07/2025 10 Lưu

  Một vật đang chuyển động với vận tốc \(6\,{\rm{m/s}}\) thì tăng tốc với gia tốc \(a\left( t \right) = \frac{3}{{1 + t}}\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), trong đó \(t\) là khoảng thời gian tính bằng giây kể từ lúc bắt đầu tăng tốc. Hỏi vận tốc của vật sau \(10\) giây gần nhất với kết quả nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Vận tốc của vật là \(v\left( t \right) = \int {a\left( t \right)} {\rm{dt}} = \int {\frac{{3{\rm{dt}}}}{{t + 1}}} {\mkern 1mu} = 3\ln \left| {t + 1} \right| + C\).
Tại thời điểm vật bắt đầu tăng tốc\(v\left( 0 \right) = C = 6\). Suy ra \(v\left( t \right) = 3\ln \left| {t + 1} \right| + 6\,\,\,\left( {{\rm{m/s}}} \right)\)
Vậy vận tốc của vật sau \(10\) giây bằng \(v\left( {10} \right) = 3\ln 11 + 6\,\, \approx 13\,\left( {{\rm{m/s}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(a\left( t \right) = {t^2} + 4t\) \( \Rightarrow v\left( t \right) = \int {a\left( t \right){\rm{d}}t}  = \frac{{{t^3}}}{3} + 2{t^2} + C{\rm{ }}\)\(\left( {C \in \mathbb{R}} \right)\).
Mà \(v\left( 0 \right) = C = 15\) \( \Rightarrow v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\).
Vậy \(S = \int\limits_0^3 {\left( {\frac{{{t^3}}}{3} + 2{t^2} + 15} \right){\rm{d}}t}  = 69,75\;{\rm{m}}\).

Lời giải

Xét phương trình \( - 5t + 10 = 0 \Leftrightarrow t = 2.\) Do vậy, kể từ lúc người lái đạp phanh thì sau 2s ô tô dừng hẳn.
Quãng đường ô tô đi được kể từ lúc người lái đạp phanh đến khi ô tô dừng hẳn là
02(-5t+10)dt=(-52t2+10t)20=10m