Câu hỏi:

25/07/2025 14 Lưu

Biết \[\int\limits_0^1 {\left[ {f\left( x \right) + 2x} \right]} dx = 3\]. Khi đó \[\int\limits_0^1 {f\left( x \right){\rm{d}}x} \] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Ta có \(\int\limits_0^1 {\left[ {f\left( x \right) + 2x} \right]} dx = 3 \Leftrightarrow \int\limits_0^1 {f\left( x \right)} dx + 2\int\limits_0^1 x dx = 3 \Leftrightarrow \int\limits_0^1 {f\left( x \right)} dx + 2.\frac{{{x^2}}}{2}\left| {\begin{array}{*{20}{c}}1\\0\end{array}} \right. = 3\).

Suy ra \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 3 - {x^2}\left| {\begin{array}{*{20}{c}}1\\0\end{array}} \right. = 3 - \left( {1 - 0} \right) = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Ta có \(\int\limits_1^3 {\left[ {1 + f(x)} \right]} {\rm{d}}x = \left[ {x + F(x)} \right]\left| {\mathop {}\limits_1^3 } \right. = \left[ {x + {x^3})} \right]\left| {\mathop {}\limits_1^3 } \right. = 30 - 2 = 28\).

Lời giải

Chọn A

Theo định nghĩa tích phân ta có: \(\int\limits_1^2 {f\left( x \right){\rm{d}}x} = F\left( 2 \right) - F\left( 1 \right) = 6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP