Câu hỏi:

25/07/2025 23 Lưu

Biết \(\int\limits_1^2 {f\left( x \right)} {\mkern 1mu} {\rm{d}}x = 3\) và \(\int\limits_1^2 {g\left( x \right)} {\rm{d}}x = 2\). Khi đó \(\int\limits_1^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]} {\mkern 1mu} {\rm{d}}x\) bằng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

 Ta có: \(\int\limits_1^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,{\rm{d}}x = \int\limits_1^2 {f\left( x \right)} \,{\rm{d}}x - \int\limits_1^2 {g\left( x \right){\rm{d}}x} = 3 - 2 = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Theo định nghĩa tích phân ta có: \(\int\limits_1^2 {f\left( x \right){\rm{d}}x} = F\left( 2 \right) - F\left( 1 \right) = 6\).

Lời giải

Chọn D

Ta có \(\int\limits_0^1 {\left[ {f\left( x \right) + 2x} \right]} dx = 3 \Leftrightarrow \int\limits_0^1 {f\left( x \right)} dx + 2\int\limits_0^1 x dx = 3 \Leftrightarrow \int\limits_0^1 {f\left( x \right)} dx + 2.\frac{{{x^2}}}{2}\left| {\begin{array}{*{20}{c}}1\\0\end{array}} \right. = 3\).

Suy ra \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 3 - {x^2}\left| {\begin{array}{*{20}{c}}1\\0\end{array}} \right. = 3 - \left( {1 - 0} \right) = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP