Cho hình chóp S.ABCD có đáy ABCD là hình thang, biết MA = MB, CD = 2ND và P là trung điểm của SC. Mặt phẳng (MNP) song song với mặt phẳng nào sau đây?
Quảng cáo
Trả lời:
Chọn B

Từ giả thiết ta có M, N là trung điểm của AB, CD nên MN là đường trung bình của hình thang ABCD Þ MN // AD Þ MN // (SAD) (1).
Lại có P, N là trung điểm của SC và CD nên PN là đường trung bình của tam giác SCD
ÞPN // SD Þ PN // (SAD) (2).
Từ (1) và (2) Þ (MNP) // (SAD).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \(\frac{{AM}}{{AD}} = \frac{{SN}}{{SD}} = \frac{1}{3}\) Þ MN // SA.
Để (CMN) // (SAB) thì MC // AB Û ABCM là hình bình hành Û AM = BC
Û \(\frac{{AM}}{{AD}} = \frac{{BC}}{{AD}} = \frac{1}{x} \Leftrightarrow \frac{1}{3} = \frac{1}{x} \Leftrightarrow x = 3\).
Trả lời: 3.
Lời giải
Chọn D

Vì M, N lần lượt là trung điểm SA, AD nên MN là đường trung bình của DSAD.
Þ MN // SD mà SD Ì (SCD) Þ MN // (SCD) (1).
Vì O, N lần lượt là trung điểm của AC, AD nên ON là đường trung bình DACD.
Þ ON // CD mà CD Ì (SCD) Þ ON // (SCD) (2).
Từ (1) và (2), suy ra (OMN) // (SCD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.