Câu hỏi:

27/07/2025 438 Lưu

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD. M, N, P lần lượt là trung điểm của SB, SD, SC. Khi đó

a) Tỉ số đồng dạng của tam giác OMP và tam giác SDA là \(\frac{1}{3}\).

b) Đường thẳng MN song song với đường thẳng BC.

c) Đường thẳng OP song song với mặt phẳng (SAD).

d) Mặt phẳng (MOP) song song với mặt phẳng (SAD).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD. M, N, P lần lượt là trung điểm của SB, SD, SC. Khi đóa) Tỉ số đồng dạng của tam giác OMP và tam giác SDA là \(\ (ảnh 1)

a) Theo đề ta có MP là đường trung bình của DSBC nên \(\frac{{MP}}{{BC}} = \frac{{MP}}{{AD}} = \frac{1}{2}\).

Tương tự \(\frac{{MO}}{{SD}} = \frac{{OP}}{{SA}} = \frac{1}{2}\).

Do đó \(\frac{{MP}}{{AD}} = \frac{{MO}}{{SD}} = \frac{{OP}}{{SA}} = \frac{1}{2}\). Suy ra DOMP đồng dạng với DSDA theo tỉ số đồng dạng là \(\frac{1}{2}\).

b) M, N lần lượt là trung điểm của SB, SD nên MN là đường trung bình của DSBD.

Suy ra MN // BD.

c) O, P lần lượt là trung điểm AC, SC nên OP là đường trung bình DSAC.

Suy ra OP // SA mà SA Ì (SAD) Þ OP // (SAD) (3).

d) Tương tự OM // SD mà SD Ì (SAD) Þ OM // (SAD) (4).

Từ (3), (4) suy ra \(\left( {MOP} \right)//\left( {SAD} \right)\).

Đáp án: a) Sai;    b) Sai;    c) Đúng;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Biết AB = 5a, CD = 2a. Gọi E là điểm thuộc cạnh SB thỏa mãn   E S E B = m n   với   m n   là phân số tối giản. Biết CE song song với mặt phẳng (SAD). Tính 2m + 3n. (ảnh 1)

Dựng CI song song với AB, I thuộc AB Þ AICD là hình bình hành Þ AI = DC.

Kẻ IH song song SA, H thuộc SB.

Xét mặt phẳng (CIH) có IC // AD và IH // SA Þ (CIH) // (SAD).

Khi đó (CIH) cắt SB tại E thì CE // (SAD) Û E ≡ H.

Ta có IE // SA (H trùng E) \( \Rightarrow \frac{{SE}}{{EB}} = \frac{{AI}}{{BI}} = \frac{2}{3}\) Þ n = 3; m = 2. Do đó 2m + 3n = 13.

Trả lời: 13.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi H, I, K lần lượt là trung điểm của SA, SB, SC. Gọi M là giao điểm của AI và KD, N là giao điểm của DH và CI. Khi đó: a) HI // (ABCD). b) (HIK) // (ABCD). c) Tứ giác ABMS là hình bình hành. d) (SMN) cắt (HIK). (ảnh 1)

a) H, I lần lượt là trung điểm của SA, SB nên HI là đường trung bình của tam giác SAB.

Suy ra HI // AB mà AB Ì (ABCD) nên HI // (ABCD) (1).

b) I, K lần lượt là trung điểm của SB, SC nên IK là đường trung bình của tam giác SBC.

Suy ra IK // BC mà BC Ì (ABCD) nên IK // (ABCD) (2).

Từ (1) và (2), suy ra (HIK) // (ABCD).

c) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{M \in AI,AI \subset (SAB)}\\{M \in DK,DK \subset (SCD)}\end{array} \Rightarrow M \in (SAB) \cap (SCD)} \right.\\ \Rightarrow SM = (SAB) \cap (SCD).\end{array}\)

\({\rm{ Khi d\'o : }}\left\{ {\begin{array}{*{20}{l}}{(SAB) \cap (SCD) = SM}\\{AB \subset (SAB),CD \subset (SCD) \Rightarrow SM//AB//CD \Rightarrow SM//HI}\\{AB//CD}\end{array}} \right..\)

Mà H là trung điểm của SA nên I là trung điểm của AM.

Xét tứ giác ABMS có I là trung điểm của AM, I là trung điểm của SB nên tứ giác ABMS là hình bình hành.

d) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{N \in DH,DH \subset (SAD)}\\{N \in CI,CI \subset (SBC)}\end{array} \Rightarrow N \in (SAD) \cap (SBC)} \right.\\ \Rightarrow SN = (SAD) \cap (SBC).\end{array}\)

Khi đó, ta có:

\(\left\{ {\begin{array}{*{20}{l}}{(SAD) \cap (SBC) = SN}\\{AD \subset (SAD),BC \subset (SBC) \Rightarrow SN//AD//BC \Rightarrow SN//KI}\\{AD//BC}\end{array}} \right.\).

Vì SM // HI mà HI Ì (HIK) nên SM // (HIK) (3).

Vì SN // KI mà KI Ì (HIK) nên SN // (HIK) (4).

Từ (3) và (4) suy ra (SMN) // (HIK).

Đáp án: a) Đúng;    b) Đúng;    c) Đúng;    d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP