Một khối gỗ có các mặt đều là một phần của mặt phẳng với (ABCD) // (EFMH), CK // DH. Khối gỗ bị hỏng một góc như hình minh họa phía dưới. Bác thợ mộc muốn làm đẹp khối gỗ bằng cách cắt khối gỗ theo mặt phẳng (α) đi qua điểm K và song song với mặt phẳng (ABCD).
Biết CK =80 cm, DH = 128 cm, BF = 1 m. Giả sử (α) cắt BF tại I. Tính độ dài đoạn BI (theo đơn vị cm).
Quảng cáo
Trả lời:


Gọi J là giao điểm của (α) và DH.
Do (α) // (ABCD) Þ JK // CD mà CK // DH Þ CDJK là hình bình hành Þ DJ = CK = 80 cm.
Do 3 mặt phẳng (EFMH), (α), (ABCD) là đôi một song song nên áp dụng định lí Thales trong không gian ta có \(\frac{{BI}}{{BF}} = \frac{{DJ}}{{DH}} \Rightarrow \frac{{BI}}{{100}} = \frac{{80}}{{128}} \Rightarrow BJ = 62,5\;cm\).
Trả lời: 62,5.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Dựng CI song song với AB, I thuộc AB Þ AICD là hình bình hành Þ AI = DC.
Kẻ IH song song SA, H thuộc SB.
Xét mặt phẳng (CIH) có IC // AD và IH // SA Þ (CIH) // (SAD).
Khi đó (CIH) cắt SB tại E thì CE // (SAD) Û E ≡ H.
Ta có IE // SA (H trùng E) \( \Rightarrow \frac{{SE}}{{EB}} = \frac{{AI}}{{BI}} = \frac{2}{3}\) Þ n = 3; m = 2. Do đó 2m + 3n = 13.
Trả lời: 13.
Lời giải

a) H, I lần lượt là trung điểm của SA, SB nên HI là đường trung bình của tam giác SAB.
Suy ra HI // AB mà AB Ì (ABCD) nên HI // (ABCD) (1).
b) I, K lần lượt là trung điểm của SB, SC nên IK là đường trung bình của tam giác SBC.
Suy ra IK // BC mà BC Ì (ABCD) nên IK // (ABCD) (2).
Từ (1) và (2), suy ra (HIK) // (ABCD).
c) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{M \in AI,AI \subset (SAB)}\\{M \in DK,DK \subset (SCD)}\end{array} \Rightarrow M \in (SAB) \cap (SCD)} \right.\\ \Rightarrow SM = (SAB) \cap (SCD).\end{array}\)
\({\rm{ Khi d\'o : }}\left\{ {\begin{array}{*{20}{l}}{(SAB) \cap (SCD) = SM}\\{AB \subset (SAB),CD \subset (SCD) \Rightarrow SM//AB//CD \Rightarrow SM//HI}\\{AB//CD}\end{array}} \right..\)
Mà H là trung điểm của SA nên I là trung điểm của AM.
Xét tứ giác ABMS có I là trung điểm của AM, I là trung điểm của SB nên tứ giác ABMS là hình bình hành.
d) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{N \in DH,DH \subset (SAD)}\\{N \in CI,CI \subset (SBC)}\end{array} \Rightarrow N \in (SAD) \cap (SBC)} \right.\\ \Rightarrow SN = (SAD) \cap (SBC).\end{array}\)
Khi đó, ta có:
\(\left\{ {\begin{array}{*{20}{l}}{(SAD) \cap (SBC) = SN}\\{AD \subset (SAD),BC \subset (SBC) \Rightarrow SN//AD//BC \Rightarrow SN//KI}\\{AD//BC}\end{array}} \right.\).
Vì SM // HI mà HI Ì (HIK) nên SM // (HIK) (3).
Vì SN // KI mà KI Ì (HIK) nên SN // (HIK) (4).
Từ (3) và (4) suy ra (SMN) // (HIK).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.