Câu hỏi:

27/07/2025 136 Lưu

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng AC tại N. Tính \(\frac{{AN}}{{NC}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng AC tại N. Tính   A N N C  . (ảnh 1)

Gọi I là giao điểm của AE và BF.

Ta có I là trung điểm đoạn AE và M là trọng tâm của tam giác ABE nên M BI và \(BM = \frac{2}{3}BI = \frac{1}{3}BF\) hay FM = 2MB.

Vì ABCD là hình bình hành nên AD // BC mà BC Ì (BEC) nên AD // (BEC).

Tương tự AF // (BEC). Do đó (AFD) // (BEC).

mà (P) // (AFD) nên (P) // (BEC).

Ta có đường thẳng FB cắt ba mặt phẳng song song (ADF), (P), (BCE) lần lượt tại F, M, B.

Đường thẳng AC cũng cắt ba mặt phẳng trên theo thứ tự tại A, N, C.

Áp dụng định lý Thales trong không gian ta có \(\frac{{AN}}{{FM}} = \frac{{NC}}{{MB}} \Rightarrow \frac{{AN}}{{NC}} = \frac{{FM}}{{MB}} = 2\).

Trả lời: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Biết AB = 5a, CD = 2a. Gọi E là điểm thuộc cạnh SB thỏa mãn   E S E B = m n   với   m n   là phân số tối giản. Biết CE song song với mặt phẳng (SAD). Tính 2m + 3n. (ảnh 1)

Dựng CI song song với AB, I thuộc AB Þ AICD là hình bình hành Þ AI = DC.

Kẻ IH song song SA, H thuộc SB.

Xét mặt phẳng (CIH) có IC // AD và IH // SA Þ (CIH) // (SAD).

Khi đó (CIH) cắt SB tại E thì CE // (SAD) Û E ≡ H.

Ta có IE // SA (H trùng E) \( \Rightarrow \frac{{SE}}{{EB}} = \frac{{AI}}{{BI}} = \frac{2}{3}\) Þ n = 3; m = 2. Do đó 2m + 3n = 13.

Trả lời: 13.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi H, I, K lần lượt là trung điểm của SA, SB, SC. Gọi M là giao điểm của AI và KD, N là giao điểm của DH và CI. Khi đó: a) HI // (ABCD). b) (HIK) // (ABCD). c) Tứ giác ABMS là hình bình hành. d) (SMN) cắt (HIK). (ảnh 1)

a) H, I lần lượt là trung điểm của SA, SB nên HI là đường trung bình của tam giác SAB.

Suy ra HI // AB mà AB Ì (ABCD) nên HI // (ABCD) (1).

b) I, K lần lượt là trung điểm của SB, SC nên IK là đường trung bình của tam giác SBC.

Suy ra IK // BC mà BC Ì (ABCD) nên IK // (ABCD) (2).

Từ (1) và (2), suy ra (HIK) // (ABCD).

c) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{M \in AI,AI \subset (SAB)}\\{M \in DK,DK \subset (SCD)}\end{array} \Rightarrow M \in (SAB) \cap (SCD)} \right.\\ \Rightarrow SM = (SAB) \cap (SCD).\end{array}\)

\({\rm{ Khi d\'o : }}\left\{ {\begin{array}{*{20}{l}}{(SAB) \cap (SCD) = SM}\\{AB \subset (SAB),CD \subset (SCD) \Rightarrow SM//AB//CD \Rightarrow SM//HI}\\{AB//CD}\end{array}} \right..\)

Mà H là trung điểm của SA nên I là trung điểm của AM.

Xét tứ giác ABMS có I là trung điểm của AM, I là trung điểm của SB nên tứ giác ABMS là hình bình hành.

d) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{N \in DH,DH \subset (SAD)}\\{N \in CI,CI \subset (SBC)}\end{array} \Rightarrow N \in (SAD) \cap (SBC)} \right.\\ \Rightarrow SN = (SAD) \cap (SBC).\end{array}\)

Khi đó, ta có:

\(\left\{ {\begin{array}{*{20}{l}}{(SAD) \cap (SBC) = SN}\\{AD \subset (SAD),BC \subset (SBC) \Rightarrow SN//AD//BC \Rightarrow SN//KI}\\{AD//BC}\end{array}} \right.\).

Vì SM // HI mà HI Ì (HIK) nên SM // (HIK) (3).

Vì SN // KI mà KI Ì (HIK) nên SN // (HIK) (4).

Từ (3) và (4) suy ra (SMN) // (HIK).

Đáp án: a) Đúng;    b) Đúng;    c) Đúng;    d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP