Câu hỏi:

27/07/2025 12 Lưu

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng AC tại N. Tính \(\frac{{AN}}{{NC}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng AC tại N. Tính   A N N C  . (ảnh 1)

Gọi I là giao điểm của AE và BF.

Ta có I là trung điểm đoạn AE và M là trọng tâm của tam giác ABE nên M BI và \(BM = \frac{2}{3}BI = \frac{1}{3}BF\) hay FM = 2MB.

Vì ABCD là hình bình hành nên AD // BC mà BC Ì (BEC) nên AD // (BEC).

Tương tự AF // (BEC). Do đó (AFD) // (BEC).

mà (P) // (AFD) nên (P) // (BEC).

Ta có đường thẳng FB cắt ba mặt phẳng song song (ADF), (P), (BCE) lần lượt tại F, M, B.

Đường thẳng AC cũng cắt ba mặt phẳng trên theo thứ tự tại A, N, C.

Áp dụng định lý Thales trong không gian ta có \(\frac{{AN}}{{FM}} = \frac{{NC}}{{MB}} \Rightarrow \frac{{AN}}{{NC}} = \frac{{FM}}{{MB}} = 2\).

Trả lời: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình thang, AD // BC, AD = xBC. Gọi M, N lần lượt là 2 điểm nằm trên AD, SD thỏa mãn   A M A D = S N S D = 1 3  . Để (CMN) // (SAB) thì khi đó giá trị x bằng bao nhiêu? (ảnh 1)

Ta có \(\frac{{AM}}{{AD}} = \frac{{SN}}{{SD}} = \frac{1}{3}\) Þ MN // SA.

Để (CMN) // (SAB) thì MC // AB Û ABCM là hình bình hành Û AM = BC

Û \(\frac{{AM}}{{AD}} = \frac{{BC}}{{AD}} = \frac{1}{x} \Leftrightarrow \frac{1}{3} = \frac{1}{x} \Leftrightarrow x = 3\).

Trả lời: 3.

Lời giải

Chọn D

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, AD. Mặt phẳng (MNO) song song với mặt phẳng nào sau đây? (ảnh 1)

Vì M, N lần lượt là trung điểm SA, AD nên MN là đường trung bình của DSAD.

Þ MN // SD mà SD Ì (SCD) Þ MN // (SCD) (1).

Vì O, N lần lượt là trung điểm của AC, AD nên ON là đường trung bình DACD.

Þ ON // CD mà CD Ì (SCD) Þ ON // (SCD) (2).

Từ (1) và (2), suy ra (OMN) // (SCD).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP