Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A'B', AB và I là tâm của hình bình hành BCC'B'.
a) Điểm N là hình chiếu song song của điểm M lên mặt phẳng (ABC) theo phương CC'.
b) Hình chiếu song song của tam giác A'CI lên mặt phẳng (ABC) theo phương CC' là tam giác ACN.
c) Giao tuyến của mặt phẳng (MNI) và mặt phẳng (BCC'B') là đường thẳng qua I và song song với BB'.
d) Đường thẳng MI cắt mặt phẳng (ABC) tại điểm K. Khi đó NK = AC.
Quảng cáo
Trả lời:

a) Đường thẳng MN song song với CC' và cắt mặt phẳng (ABC) tại N nên N là hình chiếu song song của điểm M lên mặt phẳng (ABC) theo phương CC'.
b) Hình chiếu song song của tam giác A'CI lên mặt phẳng (ABC) theo phương CC' là tam giác ACJ với J là trung điểm của BC.
c) Mặt phẳng (MNI) và (BCC'B') có điểm chung là I.
Lại có \(\left\{ \begin{array}{l}MN \subset \left( {MNI} \right)\\BB' \subset \left( {BCC'B'} \right)\\MN//BB'\end{array} \right.\). Suy ra giao tuyến của mặt phẳng (MNI) và (BCC'B') là đường thẳng qua I và song song với BB'.
d) Gọi J, H lần lượt là trung điểm của BC và B'C'.
Gọi K = MI Ç NJ, suy ra K chính là giao điểm của MI và (ABC).
Có NJ = JK = MH Þ NK = 2MH = AC.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi E = BM Ç CD; F = CM Ç BD; G = DM Ç BC.
Trong mặt phẳng (ABE), kẻ MB' // AB (B' Î AE Ì (ACD)). Suy ra B' là hình chiếu của M trên (ACD) theo phương chiếu AB.
Trong mặt phẳng (ACF), kẻ MC' // AC (C' Î AF Ì (ABD)). Suy ra C' là hình chiếu của M trên (ABD) theo phương chiếu AC.
Trong mặt phẳng (ADG), kẻ MD' // AD (D' Î AG Ì (ABC)). Suy ra D' là hình chiếu của M trên (ABC) theo phương chiếu AD.
Trong DABE có \(\frac{{MB'}}{{AB}} = \frac{{ME}}{{BE}}\).
Tương tự: \(\frac{{MC'}}{{AC}} = \frac{{MF}}{{CF}}\); \(\frac{{MD'}}{{AD}} = \frac{{MG}}{{DG}}\).
Có \(\frac{{MB'}}{{AB}}.\frac{{MC'}}{{AC}}.\frac{{MD'}}{{AD}} \le {\left( {\frac{{\frac{{MB'}}{{AB}} + \frac{{MC'}}{{AC}} + \frac{{MD'}}{{AD}}}}{3}} \right)^3} = {\left( {\frac{{\frac{{ME}}{{BE}} + \frac{{MF}}{{CF}} + \frac{{MG}}{{DG}}}}{3}} \right)^3}\).
Ta thấy \(\frac{{{S_{\Delta MBD}}}}{{{S_{\Delta CBD}}}} = \frac{{BD.d\left( {M,BD} \right)}}{{BD.d\left( {C,BD} \right)}} = \frac{{MF}}{{CF}}\); tương tự \(\frac{{{S_{\Delta MCD}}}}{{{S_{\Delta BCD}}}} = \frac{{ME}}{{BE}};\frac{{{S_{\Delta MBC}}}}{{{S_{\Delta DBC}}}} = \frac{{MG}}{{DG}}\).
Suy ra \(\frac{{ME}}{{BE}} + \frac{{MF}}{{CF}} + \frac{{MG}}{{DG}} = \frac{{{S_{\Delta MCD}}}}{{{S_{\Delta BCD}}}} + \frac{{{S_{\Delta MBD}}}}{{{S_{\Delta CBD}}}} + \frac{{{S_{\Delta MBC}}}}{{{S_{\Delta DBC}}}}\)\( = \frac{{{S_{\Delta MCD}} + {S_{\Delta MBD}} + {S_{\Delta MBC}}}}{{{S_{\Delta BCD}}}} = \frac{{{S_{\Delta BCD}}}}{{{S_{\Delta BCD}}}} = 1\).
Do đó \(\frac{{MB'}}{{AB}}.\frac{{MC'}}{{AC}}.\frac{{MD'}}{{AD}} \le \frac{1}{{27}}\).
Suy ra a = 1; b = 27. Do đó a + b = 28.
Trả lời: 28.
Lời giải

Trong (SAC) kẻ SN song song OM với N thuộc AC.
Khi đó N Î (ABCD) nên N là hình chiếu song song của S lên (ABCD) theo phương OM.
Xét DSAN ta có OM // SN \( \Rightarrow \frac{{AM}}{{AS}} = \frac{{AO}}{{AN}} = \frac{2}{3}\) \( \Rightarrow \frac{{\frac{1}{2}AC}}{{AN}} = \frac{2}{3}\)
\( \Rightarrow \frac{{AC}}{{AN}} = \frac{4}{3}\)\( \Rightarrow \frac{{AN}}{{AC}} = \frac{3}{4}\)\( \Rightarrow \frac{{CN}}{{CA}} = \frac{1}{4} = 0,25\).
Trả lời: 0,25.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.