Cho hình chóp S.ABCD có đáy là hình thoi có AC = 4 và BD = 6. Gọi O là giao điểm của AC và BD, M, N lần lượt là trung điểm của SA và SB. Khi đó:
a) Hình chiếu song song của M lên mặt phẳng (ABCD) theo phương SO là trung điểm K của AO.
b) \(\frac{{KO}}{{AC}} = \frac{1}{3}\).
c) Hình chiếu song song của tam giác SMN lên mặt phẳng (ABCD) theo phương SO là tam giác cân.
d) Diện tích hình chiếu song song của tam giác SMN theo phương SO lên mặt phẳng (ABCD) bằng \(\frac{3}{4}\).
Quảng cáo
Trả lời:


a) Trong mặt phẳng (SAC), kẻ MK // SO (K Î AO).
Suy ra K là hình chiếu song song của M trên (ABCD) theo phương SO.
Xét DSAO có MK // SO mà M là trung điểm của SA nên K là trung điểm của AO.
b) Vì K là trung điểm của AO nên \(\frac{{KO}}{{AO}} = \frac{1}{2}\)\( \Rightarrow \frac{{KO}}{{\frac{1}{2}AC}} = \frac{1}{2}\)\( \Rightarrow \frac{{KO}}{{AC}} = \frac{1}{4}\).
c) O là hình chiếu của S trên mặt phẳng (ABCD) theo phương SO;
K là hình chiếu của M trên mặt phẳng (ABCD) theo phương SO;
Trong mặt phẳng (SBO), kẻ NI // SO nên I là hình chiếu của N trên mặt phẳng (ABCD) theo phương SO.
Suy ra hình chiếu của DSMN trên mặt phẳng (ABCD) là DOKI theo phương SO.
Vì ABCD là hình thoi nên AC ^ BD nên OK ^ OI. Do đó DOKI vuông tại O.
d) Vì \(\frac{{KO}}{{AC}} = \frac{1}{4} \Rightarrow KO = \frac{{AC}}{4} = 1\)
Tương tự \(OI = \frac{1}{4}BD = \frac{1}{4}.6 = \frac{3}{2}\).
Do đó \[{S_{\Delta OKI}} = \frac{1}{2}.OK.OI = \frac{1}{2}.1.\frac{3}{2} = \frac{3}{4}\].
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi E = BM Ç CD; F = CM Ç BD; G = DM Ç BC.
Trong mặt phẳng (ABE), kẻ MB' // AB (B' Î AE Ì (ACD)). Suy ra B' là hình chiếu của M trên (ACD) theo phương chiếu AB.
Trong mặt phẳng (ACF), kẻ MC' // AC (C' Î AF Ì (ABD)). Suy ra C' là hình chiếu của M trên (ABD) theo phương chiếu AC.
Trong mặt phẳng (ADG), kẻ MD' // AD (D' Î AG Ì (ABC)). Suy ra D' là hình chiếu của M trên (ABC) theo phương chiếu AD.
Trong DABE có \(\frac{{MB'}}{{AB}} = \frac{{ME}}{{BE}}\).
Tương tự: \(\frac{{MC'}}{{AC}} = \frac{{MF}}{{CF}}\); \(\frac{{MD'}}{{AD}} = \frac{{MG}}{{DG}}\).
Có \(\frac{{MB'}}{{AB}}.\frac{{MC'}}{{AC}}.\frac{{MD'}}{{AD}} \le {\left( {\frac{{\frac{{MB'}}{{AB}} + \frac{{MC'}}{{AC}} + \frac{{MD'}}{{AD}}}}{3}} \right)^3} = {\left( {\frac{{\frac{{ME}}{{BE}} + \frac{{MF}}{{CF}} + \frac{{MG}}{{DG}}}}{3}} \right)^3}\).
Ta thấy \(\frac{{{S_{\Delta MBD}}}}{{{S_{\Delta CBD}}}} = \frac{{BD.d\left( {M,BD} \right)}}{{BD.d\left( {C,BD} \right)}} = \frac{{MF}}{{CF}}\); tương tự \(\frac{{{S_{\Delta MCD}}}}{{{S_{\Delta BCD}}}} = \frac{{ME}}{{BE}};\frac{{{S_{\Delta MBC}}}}{{{S_{\Delta DBC}}}} = \frac{{MG}}{{DG}}\).
Suy ra \(\frac{{ME}}{{BE}} + \frac{{MF}}{{CF}} + \frac{{MG}}{{DG}} = \frac{{{S_{\Delta MCD}}}}{{{S_{\Delta BCD}}}} + \frac{{{S_{\Delta MBD}}}}{{{S_{\Delta CBD}}}} + \frac{{{S_{\Delta MBC}}}}{{{S_{\Delta DBC}}}}\)\( = \frac{{{S_{\Delta MCD}} + {S_{\Delta MBD}} + {S_{\Delta MBC}}}}{{{S_{\Delta BCD}}}} = \frac{{{S_{\Delta BCD}}}}{{{S_{\Delta BCD}}}} = 1\).
Do đó \(\frac{{MB'}}{{AB}}.\frac{{MC'}}{{AC}}.\frac{{MD'}}{{AD}} \le \frac{1}{{27}}\).
Suy ra a = 1; b = 27. Do đó a + b = 28.
Trả lời: 28.
Lời giải

a) Đường thẳng MN song song với CC' và cắt mặt phẳng (ABC) tại N nên N là hình chiếu song song của điểm M lên mặt phẳng (ABC) theo phương CC'.
b) Hình chiếu song song của tam giác A'CI lên mặt phẳng (ABC) theo phương CC' là tam giác ACJ với J là trung điểm của BC.
c) Mặt phẳng (MNI) và (BCC'B') có điểm chung là I.
Lại có \(\left\{ \begin{array}{l}MN \subset \left( {MNI} \right)\\BB' \subset \left( {BCC'B'} \right)\\MN//BB'\end{array} \right.\). Suy ra giao tuyến của mặt phẳng (MNI) và (BCC'B') là đường thẳng qua I và song song với BB'.
d) Gọi J, H lần lượt là trung điểm của BC và B'C'.
Gọi K = MI Ç NJ, suy ra K chính là giao điểm của MI và (ABC).
Có NJ = JK = MH Þ NK = 2MH = AC.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.