Một nhóm học sinh gồm 7 nam và 6 nữ. Chọn ra ngẫu nhiên 5 bạn. Tính xác suất để 5 bạn được chọn có cả nam và nữ trong đó nam ít hơn nữ (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:

Gọi A là biến cố “Chọn được 1 nam và 4 nữ”;
B là biến cố “Chọn được 2 nam và 3 nữ”.
C là biến cố “Chọn được cả nam và nữ trong đó nam ít hơn nữ”.
Khi đó C = A B mà A, B là hai biến cố xung khắc nên P(C) = P(A) + P(B).
Ta có \(P\left( A \right) = \frac{{C_7^1.C_6^4}}{{C_{13}^5}} = \frac{{35}}{{429}}\); \(P\left( B \right) = \frac{{C_7^2.C_6^3}}{{C_{13}^5}} = \frac{{140}}{{429}}\).
Suy ra \(P\left( C \right) = \frac{{35}}{{429}} + \frac{{140}}{{429}} = \frac{{175}}{{429}} \approx 0,41\).
Trả lời: 0,41.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C.
Gọi biến cố A: “Sinh viên được chọn học tiếng Anh”; biến cố B: “Sinh viên được chọn chỉ học tiếng Pháp”; biến cố D: “Sinh viên được chọn không học tiếng Anh và tiếng Pháp”.
Ta có \(P\left( A \right) = \frac{{40}}{{60}} = \frac{2}{3};P\left( B \right) = \frac{{30}}{{60}} = \frac{1}{2}\) và \(P\left( {A \cap B} \right) = \frac{{20}}{{60}} = \frac{1}{3}\).
Ta có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) = \frac{2}{3} + \frac{1}{2} - \frac{1}{3} = \frac{5}{6}\).
Suy ra \(P\left( D \right) = P\left( {\overline {A \cup B} } \right) = 1 - P\left( {A \cup B} \right) = 1 - \frac{5}{6} = \frac{1}{6}\).
Lời giải
a) \(P\left( A \right) = \frac{{C_4^2}}{{C_9^2}} = \frac{1}{6}\).
b) \(P\left( B \right) = \frac{{C_3^2}}{{C_9^2}} = \frac{1}{{12}}\).
c) \(P\left( C \right) = \frac{{C_2^2}}{{C_9^2}} = \frac{1}{{36}}\).
d) Xác suất để chọn được 2 viên bi cùng màu là
\(P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) = \frac{1}{6} + \frac{1}{{12}} + \frac{1}{{36}} = \frac{5}{{18}}\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.