Câu hỏi:

27/07/2025 18 Lưu

Có ba xạ thủ độc lập bắn mỗi người một viên đạn vào một bia. Gọi A là biến cố “người thứ nhất bắn trúng”, B là biến cố “người thứ hai bắn trúng”, C là biến cố “người thứ ba bắn trúng”. Xác suất bắn trúng bia của người thứ nhất là 0,6. Xác suất bắn trúng bia của người thứ hai là 0,5. Xác suất bắn trúng bia của người thứ ba là 0,8.

a) Các biến cố A, \(\overline B ,\overline C \) là các biến cố độc lập.

b) Biến cố “Có đúng một người bắn trúng bia” là \(X = A\overline B \overline C \cup \overline A B\overline C \cup \overline A \overline B C\).

c) Xác suất của biến cố có đúng một người bắn trúng bia là 0,26.

d) Xác suất của biến cố có ít nhất một người bắn trúng bia là 0,76.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Do A, B, C độc lập nên các biến cố A, \(\overline B ,\overline C \) cũng độc lập.

b) Xét 3 trường hợp:

TH1: Người thứ nhất bắn trúng bia, người thứ hai và người thứ ba không bắn trúng bia.

TH2: Người thứ hai bắn trúng bia, người thứ nhất và người thứ ba không bắn trúng bia.

TH3: Người thứ ba bắn trúng bia, người thứ nhất và người thứ hai không bắn trúng bia.

Vì cả 3 trường hợp trên không đồng thời xảy ra nên biến cố có đúng một người bắn trúng bia là \(X = A\overline B \overline C \cup \overline A B\overline C \cup \overline A \overline B C\).

c) Vì các biến cố \(A,\overline B ,\overline C ,\overline A ,B,\overline C ,\overline A ,\overline B ,\overline C \) độc lập và các biến cố \(A\overline B \overline C ,\overline A B\overline C ,\overline A \overline B C\) xung khắc nên ta có: \(P\left( X \right) = P\left( {A\overline B \overline C } \right) + P\left( {\overline A B\overline C } \right) + P\left( {\overline A \overline B C} \right)\)

\( = P\left( A \right).P\left( {\overline B } \right).P\left( {\overline C } \right) + P\left( {\overline A } \right).P\left( B \right).P\left( {\overline C } \right) + P\left( {\overline A } \right)P\left( {\overline B } \right)P\left( C \right)\)

= 0,6.0,5.0,2 + 0,4.0,5.0,2 + 0,4.0,5.0,8 = 0,26.

d) Gọi T là biến cố “Có ít nhất 1 người bấn trúng bia”, suy ra \(\overline T \) là biến cố “Cả 3 người không bắn trúng bia”.

\(P\left( T \right) = 1 - P\left( {\overline T } \right) = 1 - 0,4.0,5.0,2 = 0,96\).

Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi các biến cố A: “Lấy được sản phẩm tốt từ lô hàng thứ nhất” và biến cố B: “Lấy được sản phẩm tốt từ lô hàng thứ hai”.

Gọi biến cố X: “Trong hai sản phẩm lấy ra có đúng một sản phẩm có chất lượng tốt”.

Ta có \(X = \overline A B \cup A\overline B \).

Ta có \(P\left( X \right) = P\left( {\overline A B} \right) + P\left( {A\overline B } \right)\)\( = P\left( {\overline A } \right).P\left( B \right) + P\left( A \right).P\left( {\overline B } \right)\) = (1 – 0,5).0,8 + (1 – 0,8).0,5 = 0,5.

Trả lời: 0,5.

Lời giải

Gọi A là biến cố “Quả cầu lấy ra từ hộp thứ nhất là màu đỏ”;

B là biến cố “Quả cầu lấy ra từ hộp thứ hai là màu đỏ”

a) \(P\left( A \right) = \frac{5}{{12}}\).

b) \(P\left( B \right) = \frac{4}{{10}}\).

Vì A, B là hai biến cố độc lập nên xác suất để hai quả cầu lấy ra cùng màu đỏ là

\(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = \frac{5}{{12}}.\frac{4}{{10}} = \frac{1}{6}\).

c) A B là biến cố: “2 quả lấy ra có ít nhất 1 quả màu đỏ”.

Khi đó \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{5}{{12}} + \frac{4}{{10}} - \frac{1}{6} = \frac{{13}}{{20}}\).

d) Xác suất để 2 quả lấy ra cùng màu là

\(P\left( {AB \cup \overline A \overline B } \right) = P\left( {AB} \right) + P\left( {\overline A \overline B } \right)\) \( = P\left( A \right).P\left( B \right) + P\left( {\overline A } \right)P\left( {\overline B } \right)\)\( = \frac{5}{{12}}.\frac{4}{{10}} + \frac{7}{{12}}.\frac{6}{{10}} = \frac{{31}}{{60}}\).

Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.