PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số f(x) = x3 – 2x có đồ thị (C).
a) Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ x0 là k = f'(x0).
b) \(f'\left( {{x_0}} \right) = 3x_0^2 - 2\).
c) f'(2) = 14.
d) Phương trình tiếp tuyến của (C) tại điểm M(2; 4) là y = 10x + 16.
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số f(x) = x3 – 2x có đồ thị (C).
a) Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ x0 là k = f'(x0).
b) \(f'\left( {{x_0}} \right) = 3x_0^2 - 2\).
c) f'(2) = 14.
d) Phương trình tiếp tuyến của (C) tại điểm M(2; 4) là y = 10x + 16.
Quảng cáo
Trả lời:
a) Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ x0 là k = f'(x0).
b) \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - 2x - x_0^3 + 2{x_0}}}{{x - {x_0}}}\)\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2 - 2} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2 - 2} \right) = 3x_0^2 - 2\).
c) f'(2) = 3.22 – 2 = 10.
d) Phương trình tiếp tuyến của (C) tại điểm M(2; 4) là y = 10(x – 2) + 4 = 10x – 16.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
C
Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 2 là
\(f'\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^3} + 3{x^2} - 20}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 5x + 10} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {{x^2} + 5x + 10} \right) = 24\).
Có f(2) = 18
Phương trình tiếp tuyến có dạng: y = 24(x – 2) + 18 = 24x – 30.
Câu 2
C. f'(1) với f(x) = lnx.
Lời giải
A
\(f'\left( e \right) = \mathop {\lim }\limits_{x \to e} \frac{{\ln x - \ln e}}{{x - e}} = \mathop {\lim }\limits_{x \to e} \frac{{\ln x - 1}}{{x - e}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.