PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số f(x) = x3 – 2x có đồ thị (C).
a) Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ x0 là k = f'(x0).
b) \(f'\left( {{x_0}} \right) = 3x_0^2 - 2\).
c) f'(2) = 14.
d) Phương trình tiếp tuyến của (C) tại điểm M(2; 4) là y = 10x + 16.
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số f(x) = x3 – 2x có đồ thị (C).
a) Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ x0 là k = f'(x0).
b) \(f'\left( {{x_0}} \right) = 3x_0^2 - 2\).
c) f'(2) = 14.
d) Phương trình tiếp tuyến của (C) tại điểm M(2; 4) là y = 10x + 16.
Quảng cáo
Trả lời:
a) Hệ số góc của tiếp tuyến với (C) tại điểm có hoành độ x0 là k = f'(x0).
b) \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - 2x - x_0^3 + 2{x_0}}}{{x - {x_0}}}\)\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2 - 2} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2 - 2} \right) = 3x_0^2 - 2\).
c) f'(2) = 3.22 – 2 = 10.
d) Phương trình tiếp tuyến của (C) tại điểm M(2; 4) là y = 10(x – 2) + 4 = 10x – 16.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) b) Ta có: \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{x - 2}}{{x + 1}} - \left( { - 2} \right)}}{x}\)\( = \mathop {\lim }\limits_{x \to 0} \frac{{3x}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{3}{{x + 1}} = 3\).
Vậy \(f'\left( 0 \right) = 3\).
c) Ta có 3x = 3Û x = 1 = 3 – 2.
d) log39 = 2.
a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
\({\rm{ Ta c\'o }}\mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{2{x^3} - 16}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} 2\left( {{x^2} + 2x + 4} \right) = 24.\)
Vậy \({\rm{ }}f'\left( 2 \right) = 24.{\rm{ }}\)
Trả lời: 24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.