Câu hỏi:

19/08/2025 391 Lưu

Bảng sau thống kê cân nặng của 50 quả xoài Thanh Ca được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.

Bảng sau thống kê cân nặng của 50 quả xoài Thanh Ca được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.  (ảnh 1)

a) Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

b) Có ý kiến cho rằng: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200 g”. Ý kiến đó đúng hay sai? Giải thích.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: 450 – 250 = 200 (g).

b) Ý kiến đó đúng. Vì: ta thấy trong bảng số liệu, cân nặng lớn nhất quả xoài có thể đạt được là \(450\;{\rm{g}}\), còn cân nặng bé nhất quả xoài có thể đạt được là \(250\;{\rm{g}}\). Do đó, bất kì hai quả nào cūng có hiệu số cân nặng không vượt quá \(200\;{\rm{g}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Cỡ mẫu là \(n = 3 + 12 + 15 + 8 = 38\). Gọi \({x_1}, \ldots ,{x_{38}}\) là thời gian chờ khám bệnh của 38 bệnh nhân này và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}}\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \([5;10)\) và ta có: \({Q_1} = 5 + \left[ {\frac{{\frac{{38}}{4} - 3}}{{12}}} \right] \cdot 5 \approx 7,71\)

Tứ phân vị thứ ba của mã̃u số liệu gốc là \({x_{29}}\) nên nhóm chứa tứ phân vị thứ ba là nhóm [10 ; 15) và ta có: \({Q_3} = 10 + \left[ {\frac{{\frac{{3 \cdot 38}}{4} - 15}}{{15}}} \right] \cdot 5 = 14,5\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} \approx 14,5 - 7,71 = 6,79\).

b) Do \({\Delta _Q} = 6,79 < 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám \(Y\) phân tán hơn thời gian chờ của bệnh nhân tại phòng khám \(X\).

Lời giải

Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng X và hãng Y sản xuất tương ứng là RX = 12 − 2 = 10 và RY = 12 − 4 = 8. Vì RX > RY nên có thể nói là máy do hãng X sản xuất có tuổi thọ phân tán hơn so với máy của hãng Y.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP