Cho mẫu số liệu ghép nhóm vể chiều cao (đơn vị centimet) của 36 học sinh nam lớp 12 ở một trường THPT. Tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên
Cho mẫu số liệu ghép nhóm vể chiều cao (đơn vị centimet) của 36 học sinh nam lớp 12 ở một trường THPT. Tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên

Câu hỏi trong đề: 15 bài tập Khoảng biến thiên (có lời giải) !!
Quảng cáo
Trả lời:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hai mẫu số liệu đều có khoảng biến thiên là \(R = 100 - 50 = 50\) nên không thể căn cú vào đó để nói điểm của lớp nào đồng đều hơn.
b) Kích thước của hai mẫu số liệu đều là \(N = 100\). Ta có \(\frac{N}{4} = 25;\frac{N}{2} = 50;\frac{{3N}}{4} = 75\).
- Đối với mẫu số liệu về điểm của lớp \(A\), ta tìm các tứ phân vị \(Q_1^A,Q_2^A,Q_3^A\) và khoảng tứ phân vị \(\Delta _Q^A\) qua bảng tần số tích luỹ dưới đây:

Nhóm chứa \(Q_1^A\) là \([60;70)\). \(Q_1^A = 60 + \frac{{25 - 8}}{{20}} \cdot 10 = 68,5\).
Nhóm chứa \(Q_2^A\) là [70 ; 80).\(Q_2^A = 70 + \frac{{50 - 28}}{{50}} \cdot 10 = 74,4\).
Nhóm chứa \(Q_3^A\) là [70 ; 80).\(Q_3^A = 70 + \frac{{75 - 28}}{{50}} \cdot 10 = 79,4\).
Vậy \(\Delta _Q^A = 79,4 - 68,5 = 10,9\).
- Gọi \(Q_1^B,Q_2^B,Q_3^B\) là các tứ phân vị và \(\Delta _Q^B\) là khoảng tứ phân vị của mẫu số liệu về điểm của lớp B. Ta lập bảng tần số tích luỹ và tính được:

Nhóm chứa \(Q_1^B\) là \([60;70)\). \(Q_1^B = 60 + \frac{{25 - 15}}{{20}} \cdot 10 = 65\).
Nhóm chứa \(Q_2^B\) là [70 ; 80).\(Q_2^B = 70 + \frac{{50 - 35}}{{30}} \cdot 10 = 75\).
Nhóm chứa \(Q_3^B\) là [80 ; 90).\(Q_3^B = 80 + \frac{{75 - 65}}{{20}} \cdot 10 = 85\).
Vậy \(\Delta _Q^B = 85 - 65 = 20\).
c) \(\Delta _Q^B > \Delta _Q^A\) nên điểm của lớp \(B\) phân tán hơn điểm của lớp \(A\). Minh hoạ trên trục số: Mỗi mẫu đều có 100 số liệu thuộc khoảng \([50;100)\). Có \(50\% \) số liệu ở giữa của bảng điểm lớp \(B\) thuộc khoảng \(\left( {Q_1^B,Q_3^B} \right)\). Bảng điểm lớp \(A\) cũng có \(50\% \) số liệu ở giữa thuộc khoảng \(\left( {Q_1^A,Q_3^A} \right)\). Vì \(\left( {Q_1^A,Q_3^A} \right) \subset \left( {Q_1^B,Q_3^B} \right)\) nên ta có thể nói là điểm của lớp \({\rm{B}}\) phân tán hơn so với điểm lớp \({\rm{A}}\).

Lời giải
Gọi \({R_1},{R_2}\) tương ứng là khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian sử dụng mạng xã hội trong ngày của các bạn Tổ 1 và Tổ 2 .
Ta có: \({R_1} = 90 - 0 = 90\) và \({R_2} = 60 - 0 = 60\).
Do \({R_1} > {R_2}\) nên ta có thể kết luận rằng thời gian sử dụng mạng xã hội trong ngày của các bạn Tổ 1 phân tán hơn thời gian sử dụng mạng xã hội của các bạn Tổ 2 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.