Cho bảng tần số ghép nhóm thống kê mức lương của một công ty ( đơn vị: triệu đồng)
a) Tính khoảng biến thiên của mẫu số liệu trên là:
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là
Cho bảng tần số ghép nhóm thống kê mức lương của một công ty ( đơn vị: triệu đồng)

a) Tính khoảng biến thiên của mẫu số liệu trên là:
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là
Quảng cáo
Trả lời:
a) Trong mẫu số liệu ghép nhóm ở bảng, ta có: đầu mút trái của nhóm 1 là \({{\rm{a}}_1} = 10\), đầu mút phải của nhóm 6 là \({{\rm{a}}_7} = 40\).
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
\({\rm{R}} = {{\rm{a}}_7} - {{\rm{a}}_1} = 40 - 10 = 30{\rm{ ((triệu đồng))}}{\rm{. }}\)
b) Từ Bảng trên ta có bảng sau:

Số phần tử của mẫu là \({\rm{n}} = 60\).
Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\). Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15 . Xét nhóm 1 là nhóm \([10;15)\) có \({\rm{s}} = 10;{\rm{h}} = 5;{{\rm{n}}_1} = 15\).
Áp dụng công thức, ta có tứ phân vị thứ nhất là: \({Q_1} = 10 + \frac{{15}}{{15}} \cdot 5 = 15\)(triệu đồng)
Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà \(43 < 45 < 53\). Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lūy lớn hơn hoặc bẳng 45 . Xét nhóm 4 là nhóm \([25;30)\) có \(t = 25;1 = 5;{n_4} = 10\) và nhóm 3 là nhóm \([20;25)\) có cf \(3 = 43\).
Áp dụng công thức, ta có tứ phân vị thứ ba là: \({Q_3} = 25 + \left( {\frac{{45 - 43}}{{10}}} \right) \cdot 5 = 26{\rm{ }}\)(triệu đồng)
Vậy khoảng tứ phân vị của mẵu số liệu ghép nhóm đã cho là: \({\Delta _Q} = {Q_3} - {Q_1} = 26 - 15 = 11\)(triệu đồng)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích lũy như ở Bảng 8.
Số phần tử của mẫu là \(n = 40\). Ta có \(\frac{n}{2} = 20\) mà \(15 < 20 < 22\).
Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 có \(r = 50;d = 5;{n_3} = 7\) và nhóm 2 có \(c{f_2} = 15\).
Trung vị của mẫu số liệu ghép nhóm đó là \({M_e} = 50 + \frac{{20 - 15}}{7}.5 = \frac{{375}}{7}\left( {km/h} \right)\).
Suy ra \(a = 375\).
Lời giải
Trong mẫu số liệu ghép nhóm ở Bảng 1 , ta có: đầu mút trái của nhóm 1 là \({{\rm{a}}_1} = 40\), đầu mút phải của nhóm 5 là \({{\rm{a}}_6} = 75\).
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \({\rm{R}} = {{\rm{a}}_6} - {{\rm{a}}_1} = 75 - 40 = 35{\rm{ (ta/ha)}}{\rm{. }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.