Câu hỏi:

06/08/2025 5 Lưu

Một công ty dược phẩm giới thiệu một dụng cụ kiểm tra sớm bệnh sốt xuất huyết. Về kiểm định chất lượng của sản phẩm, họ cho biết như sau: Số người được thử là 9000 , trong số đó có 1500 người đã bị nhiễm bệnh sốt xuất huyết và có 7500 người không bị nhiễm bệnh sốt xuất huyết. Khi thử bằng dụng cụ của công ty, trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, có \(76\% \) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Mặt khác, trong 7500 người không bị nhiễm bệnh sốt xuất huyết, có \(7\% \) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính khi kiểm tra.
 

Nhà sản xuất khẳng định dụng cụ cho kết quả đúng với hơn \(90\% \) số trường hợp có kết quả dương tính. Khẳng định đó có đúng không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do \(68,5\%  < 90\% \) nên khẳng định của nhà sản xuất là không đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”;

B là biến cố: "Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm".

Ta cần tính \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).

Ta có \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}}\). Ở câu a) ta đã có \(P(AB) = \frac{2}{{36}}\). Cần tính \({\rm{P}}({\rm{A}})\).

Ta có \({\rm{A}} = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} ;n(A) = 6 \Rightarrow P(A) = \frac{6}{{36}}\).

Từ đó suy ra \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}} = \frac{2}{6} = \frac{1}{3}\)

Lời giải

Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp. Xét các biến cố:

A: "Quả bóng màu xanh được lấy ra ở lần thứ nhất";

\(B\) : "Quả bóng màu đỏ được lấy ra ở lần thứ hai".

Chứng minh rằng \(A\), \(B\) là hai biến cố độc lập.