Trong một túi có một số chiếc kẹo cùng loại, chỉ khác màu, trong đó có 6 cái kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngã̃u nhiên một cái kẹo từ trong túi, không trả lại.
Sau đó Hà lại lấy ngẫu nhiên thêm một cái kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai cái kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu cái kẹo?
Trong một túi có một số chiếc kẹo cùng loại, chỉ khác màu, trong đó có 6 cái kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngã̃u nhiên một cái kẹo từ trong túi, không trả lại.
Sau đó Hà lại lấy ngẫu nhiên thêm một cái kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai cái kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu cái kẹo?
Quảng cáo
Trả lời:
Gọi A là biến cố: "Lằn 1 Hà lấy được kẹo màu cam";
B là biến cố: "Lần 2 Hà lấy được kẹo màu cam".
Khi đó AB là biến cố: "Cả hai lần Hà lấy được kẹo màu cam". Ta có \({\rm{P}}({\rm{AB}}) = \frac{1}{3}\).
Gọi \(n\) là số kẹo ban đầu trong túi \((n > 0)\).
Ta có \(P(A) = \frac{6}{n},P(B\mid A) = \frac{5}{{n - 1}}\).
Theo công thức nhân xác suất, ta có:
\(P(AB) = P(A) \cdot P(B\mid A) = \frac{6}{n} \cdot \frac{5}{{n - 1}} = \frac{{30}}{{{n^2} - n}} = \frac{1}{3}\)
\( \Rightarrow {n^2} - n - 90 = 0 \Leftrightarrow n = - 9{\rm{ (loai) ; }}n = 10(t/m).\)
Vậy ban đầu trong túi có 10 cái kẹo.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”;
B là biến cố: "Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm".
Ta cần tính \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).
Ta có \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}}\). Ở câu a) ta đã có \(P(AB) = \frac{2}{{36}}\). Cần tính \({\rm{P}}({\rm{A}})\).
Ta có \({\rm{A}} = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} ;n(A) = 6 \Rightarrow P(A) = \frac{6}{{36}}\).
Từ đó suy ra \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}} = \frac{2}{6} = \frac{1}{3}\)
Lời giải
\( \cdot \) Trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, số người cho kết quả dương tính (khi kiểm tra) là: \(76\% \). \(1500 = 1140\) (người).
Trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, số người cho kết quả âm tính (khi kiểm tra) là: \(1500 - 1140 = 360\) (người).
- Trong 7500 người không bị nhiễm bệnh sốt xuất huyết, số người cho kết quả dương tính (khi kiểm tra) là: \(7\% \). \(7500 = 525\) (người). Do đó, số người không bị nhiễm bệnh sốt xuất huyết cho kết quả âm tính (khi kiểm tra) là: \(7500 - 525 = 6975\) (người).
Từ đó, Bảng trên được hoàn thiện bởi Bảng dưới đây (đơn vị: người).

Từ Bảng vừa tìm được ta thấy số người có kết quả dương tính khi thử nghiệm là:
\(525 + 1140 = 1665 > 1500.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.