Câu hỏi:
13/07/2024 6,327Gọi MH là đường cao của tam giác MNP. Chứng minh rằng:
Nếu MN<MP thì HN<HP và
(yêu cầu xét hai trường hợp: khi góc N nhọn và khi góc N tù).
Quảng cáo
Trả lời:
+ So sánh NH và PH
MH là đường cao của ΔMNP ⇒ H là hình chiếu của M trên đường thẳng NP.
⇒ NH là hình chiếu của đường xiên NM trên đường thẳng NP
PH là hình chiếu của đường xiên MP trên đường thẳng NP.
Mà NM < PM ⇒ NH < PH (đường xiên nào lớn hơn thì hình chiếu lớn hơn).
• TH1: Xét ΔMNP có góc N nhọn
⇒ góc P nhọn (vì MN < MP nên ).
⇒ H nằm giữa N và P.
• TH2: Xét ΔMNP có góc N tù
suy ra H nằm ngoài cạnh NP.
(vì giả sử H nằm giữa N và P thì ΔMNH có ).
Lại có HN < HP nên N nằm giữa H và P
⇒ Tia MN ở giữa hai tia MH và MP ⇒
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Toán - Văn - Anh, Toán - Anh - KHTN lớp 6 (chương trình mới) ( 126.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi O là địa điểm đặt nhà máy (O tùy ý)
A, B, C, D lần lượt là bốn điểm dân cư (A,B, C, D cố định).
Ta luôn có:
OA + OC ≥ AC
OB + OD ≥ BD
⇒ OA + OB + OC + OD ≥ AC + BD (AC + BD là hằng số)
Vậy để OA + OB + OC + OD nhỏ nhất thì OA + OC = AC và OB + OD = BD.
OA + OC = AC khi O thuộc đoạn AC.
OB + OD = BD khi O thuộc đoạn BD.
Vậy OA + OB + OC + OD nhỏ nhất khi O là giao điểm của hai đoạn AC và BD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.