Câu hỏi:
13/07/2024 5,393Gọi MH là đường cao của tam giác MNP. Chứng minh rằng:
Nếu MN<MP thì HN<HP và
(yêu cầu xét hai trường hợp: khi góc N nhọn và khi góc N tù).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ So sánh NH và PH
MH là đường cao của ΔMNP ⇒ H là hình chiếu của M trên đường thẳng NP.
⇒ NH là hình chiếu của đường xiên NM trên đường thẳng NP
PH là hình chiếu của đường xiên MP trên đường thẳng NP.
Mà NM < PM ⇒ NH < PH (đường xiên nào lớn hơn thì hình chiếu lớn hơn).
• TH1: Xét ΔMNP có góc N nhọn
⇒ góc P nhọn (vì MN < MP nên ).
⇒ H nằm giữa N và P.
• TH2: Xét ΔMNP có góc N tù
suy ra H nằm ngoài cạnh NP.
(vì giả sử H nằm giữa N và P thì ΔMNH có ).
Lại có HN < HP nên N nằm giữa H và P
⇒ Tia MN ở giữa hai tia MH và MP ⇒
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC với AC < AB. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Vẽ các đonạ thẳng AD, AE.
Hãy so sánh góc ADC và góc AEB.
Câu 2:
Đố: Bốn điểm dân cư được xây dựng như hình 58. Hãy tìm vị trí đặt một nhà máy sao cho tổng khoảng cách từ nhà máy đến bốn điểm dân cư này là nhỏ nhất.
Hình 58
Câu 3:
Có thể vẽ được mấy tam giác (phân biệt) với ba cạnh là ba trong năm đoạn thẳng có độ dài như sau: 1cm, 2cm, 3cm, 4cm và 5cm?
Câu 4:
Cho hai đường thẳng phân biệt không song song a và b, điểm M nằm bên trong hai đường thẳng này. Qua M lần lượt vẽ đường thẳng c vuông góc với a tại P, cắt b tại Q và đường thẳng d vuông góc với b tại R, cắt a tại S. Chứng minh rằng đường thẳng qua M, vuông góc với SQ cũng đi qua giao điểm của a và b.
Câu 5:
Cho tam giác DEF. Hãy viết bất đẳng thức về quan hệ giữa các cạnh của tam giác này.
Câu 6:
Cho tam giác ABC với AC < AB. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Vẽ các đonạ thẳng AD, AE.
Hãy so sánh các đoạn thẳng AD và AE.
về câu hỏi!