Câu hỏi:

19/08/2025 315 Lưu

Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình sau đây.

Cho hàm số f(x) = ax^3 + bx^2 + cx + d có đồ thị như hình sau đây (ảnh 1)

a) Giá trị cực tiểu của hàm số \(f\left( x \right)\) bằng \( - 1\).

b) Phương trình \({\log _3}\left( {f\left( x \right) + 6} \right) = 2\) có 2 nghiệm.

c) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {1;3} \right)\).

d) Tổng \(2025a + b + c + d = - 2023\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Dựa vào đồ thị hàm số ta thấy giá trị cực tiểu của hàm số \(f\left( x \right)\) bằng \( - 1\).

b) Đúng. Ta có: \({\log _3}\left( {f\left( x \right) + 6} \right) = 2 \Leftrightarrow f\left( x \right) + 6 = 9 \Leftrightarrow f\left( x \right) = 3\)          \(\left( * \right)\)

Số nghiệm của phương trình \(\left( * \right)\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) với đường thẳng \(y = 3\). Dựa vào đồ thị ta thấy phương trình \(\left( * \right)\) có 2 nghiệm.

c) Sai. Dựa vào đồ thị ta thấy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {1;2} \right)\) và nghịch biến trên khoảng \(\left( {2;3} \right)\).

d) Đúng. Ta có \(f'\left( x \right) = 3a{x^2} + 2bx + c\).

Theo giả thiết ta có: \(\left\{ \begin{array}{l}f'\left( 0 \right) = 0\\f'\left( 2 \right) = 0\\f\left( 0 \right) = - 1\\f\left( 2 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 0\\12a + 4b + c = 0\\d = - 1\\8a + 4b + 2c + d = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 3\\c = 0\\d = - 1\end{array} \right.\).

Tổng \(2025a + b + c + d = - 2025 + 3 + 0 - 1 = - 2023\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Tọa độ điểm \[A\]\[\left( {4;0;0} \right).\]

b) Đúng. Tọa độ điểm \[O\]\[\left( {0;0;0} \right).\] Tọa độ điểm \[Q\]\[\left( {2;5;4} \right).\]

Do đó \[\overrightarrow {OQ} = \left( {2;5;4} \right).\]

c) Sai. Tọa độ điểm \[H\]\[\left( {0;5;3} \right).\] Do đó tọa độ \[\overrightarrow {AH} = \left( { - 4;5;3} \right).\]

d) Đúng. Tọa độ điểm \[C\]\[\left( {0;5;0} \right).\] 

Lời giải

Ta có \(y' = f'\left( x \right) = \frac{{\left( {4x + 26} \right)\left( {x + 13} \right) - \left( {2{x^2} + 26x + 18} \right)}}{{{{\left( {x + 13} \right)}^2}}} = \frac{{2{x^2} + 52x + 320}}{{{{\left( {x + 13} \right)}^2}}}\).

\(y' = 0 \Leftrightarrow 2{x^2} + 52x + 320 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 16\\x = - 10\end{array} \right.\).

Hàm số đạt cực tiểu tại \(x = {x_1} = - 10\) và đạt cực đại tại \(x = {x_2} = - 16\).

Khi đó \(P = - 2{x_1} + {x_2} = - 2 \cdot \left( { - 10} \right) - 16 = 4\).

Đáp án: \(4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = \overrightarrow 0 \).

B. \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).

C. \(\overrightarrow {SA} + \overrightarrow {SB} = \overrightarrow {SC} + \overrightarrow {SD} \).

D. \(\overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SA} + \overrightarrow {SD} \). 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP