Câu hỏi:

19/08/2025 191 Lưu

Hai con tàu \(A\)\(B\) đang ở cùng một vĩ tuyến và cách nhau 6 hải lí. Cả hai tàu đồng thời cùng khởi hành. Tàu \(A\) chạy về hướng Nam với vận tốc 5 hải lí/ giờ, còn tàu \(B\) chạy về vị trí hiện tại của tàu \(A\) với vận tốc 7 hải lí/ giờ. Hỏi sau bao nhiêu giờ thì khoảng cách giữa hai tàu là bé nhất (làm tròn kết quả đến hàng phần trăm)?

Hai con tàu A và B đang ở cùng một vĩ tuyến và cách nhau 6 hải lí (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Hai con tàu A và B đang ở cùng một vĩ tuyến và cách nhau 6 hải lí (ảnh 2)

Giả sử ban đầu tàu \(A\) ở vị trí \(A\) và tàu \(B\) ở vị trí \(B\). Sau khoảng thời gian \(t\):

Tàu \(A\) di chuyển được quãng đường \(5t\) về phía Nam đến vị trí \({A_1}\).

Tàu \(B\) di chuyển được quãng đường \(7t\) đến vị trí \({B_1}\).

Khoảng cách từ vị trí \({B_1}\) đến vị trí \[A\]\(6 - 7t\).

Áp dụng định lý Pytago ta có: \(d = {A_1}{B_1} = f\left( t \right) = \sqrt {{{\left( {6 - 7t} \right)}^2} + {{\left( {5t} \right)}^2}} = \sqrt {74{t^2} - 84t + 36} \).

Để khoảng cách giữa hai tàu nhỏ nhất, thì hàm số \(g\left( t \right) = 74{t^2} - 84t + 36\) đạt giá trị nhỏ nhất.

Hàm số \(g\left( t \right)\) đạt giá trị nhỏ nhất tại \(t = \frac{{ - \left( { - 84} \right)}}{{2.74}} = \frac{{21}}{{37}}\), vậy thời điểm khoảng cách giữa hai tàu bé nhất là khi \(t = \frac{{21}}{{37}} \approx 0,57\)(giờ).

Đáp án: \(0,57\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Dựa vào đồ thị hàm số ta thấy giá trị cực tiểu của hàm số \(f\left( x \right)\) bằng \( - 1\).

b) Đúng. Ta có: \({\log _3}\left( {f\left( x \right) + 6} \right) = 2 \Leftrightarrow f\left( x \right) + 6 = 9 \Leftrightarrow f\left( x \right) = 3\)          \(\left( * \right)\)

Số nghiệm của phương trình \(\left( * \right)\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) với đường thẳng \(y = 3\). Dựa vào đồ thị ta thấy phương trình \(\left( * \right)\) có 2 nghiệm.

c) Sai. Dựa vào đồ thị ta thấy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {1;2} \right)\) và nghịch biến trên khoảng \(\left( {2;3} \right)\).

d) Đúng. Ta có \(f'\left( x \right) = 3a{x^2} + 2bx + c\).

Theo giả thiết ta có: \(\left\{ \begin{array}{l}f'\left( 0 \right) = 0\\f'\left( 2 \right) = 0\\f\left( 0 \right) = - 1\\f\left( 2 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 0\\12a + 4b + c = 0\\d = - 1\\8a + 4b + 2c + d = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 3\\c = 0\\d = - 1\end{array} \right.\).

Tổng \(2025a + b + c + d = - 2025 + 3 + 0 - 1 = - 2023\).

Lời giải

Ta có \(y' = f'\left( x \right) = \frac{{\left( {4x + 26} \right)\left( {x + 13} \right) - \left( {2{x^2} + 26x + 18} \right)}}{{{{\left( {x + 13} \right)}^2}}} = \frac{{2{x^2} + 52x + 320}}{{{{\left( {x + 13} \right)}^2}}}\).

\(y' = 0 \Leftrightarrow 2{x^2} + 52x + 320 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 16\\x = - 10\end{array} \right.\).

Hàm số đạt cực tiểu tại \(x = {x_1} = - 10\) và đạt cực đại tại \(x = {x_2} = - 16\).

Khi đó \(P = - 2{x_1} + {x_2} = - 2 \cdot \left( { - 10} \right) - 16 = 4\).

Đáp án: \(4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = 1 - 2x\].

B. \[y = 2x\].

C. \[y = 2x - 1\].

D. \[y = - 2x\]. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = \overrightarrow 0 \).

B. \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).

C. \(\overrightarrow {SA} + \overrightarrow {SB} = \overrightarrow {SC} + \overrightarrow {SD} \).

D. \(\overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SA} + \overrightarrow {SD} \). 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP