Hai con tàu \(A\) và \(B\) đang ở cùng một vĩ tuyến và cách nhau 6 hải lí. Cả hai tàu đồng thời cùng khởi hành. Tàu \(A\) chạy về hướng Nam với vận tốc 5 hải lí/ giờ, còn tàu \(B\) chạy về vị trí hiện tại của tàu \(A\) với vận tốc 7 hải lí/ giờ. Hỏi sau bao nhiêu giờ thì khoảng cách giữa hai tàu là bé nhất (làm tròn kết quả đến hàng phần trăm)?
Hai con tàu \(A\) và \(B\) đang ở cùng một vĩ tuyến và cách nhau 6 hải lí. Cả hai tàu đồng thời cùng khởi hành. Tàu \(A\) chạy về hướng Nam với vận tốc 5 hải lí/ giờ, còn tàu \(B\) chạy về vị trí hiện tại của tàu \(A\) với vận tốc 7 hải lí/ giờ. Hỏi sau bao nhiêu giờ thì khoảng cách giữa hai tàu là bé nhất (làm tròn kết quả đến hàng phần trăm)?

Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 12 có đáp án !!
Quảng cáo
Trả lời:


Giả sử ban đầu tàu \(A\) ở vị trí \(A\) và tàu \(B\) ở vị trí \(B\). Sau khoảng thời gian \(t\):
Tàu \(A\) di chuyển được quãng đường \(5t\) về phía Nam đến vị trí \({A_1}\).
Tàu \(B\) di chuyển được quãng đường \(7t\) đến vị trí \({B_1}\).
Khoảng cách từ vị trí \({B_1}\) đến vị trí \[A\] là \(6 - 7t\).
Áp dụng định lý Pytago ta có: \(d = {A_1}{B_1} = f\left( t \right) = \sqrt {{{\left( {6 - 7t} \right)}^2} + {{\left( {5t} \right)}^2}} = \sqrt {74{t^2} - 84t + 36} \).
Để khoảng cách giữa hai tàu nhỏ nhất, thì hàm số \(g\left( t \right) = 74{t^2} - 84t + 36\) đạt giá trị nhỏ nhất.
Hàm số \(g\left( t \right)\) đạt giá trị nhỏ nhất tại \(t = \frac{{ - \left( { - 84} \right)}}{{2.74}} = \frac{{21}}{{37}}\), vậy thời điểm khoảng cách giữa hai tàu bé nhất là khi \(t = \frac{{21}}{{37}} \approx 0,57\)(giờ).
Đáp án: \(0,57\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Tọa độ điểm \[A\] là \[\left( {4;0;0} \right).\]
b) Đúng. Tọa độ điểm \[O\] là \[\left( {0;0;0} \right).\] Tọa độ điểm \[Q\] là \[\left( {2;5;4} \right).\]
Do đó \[\overrightarrow {OQ} = \left( {2;5;4} \right).\]
c) Sai. Tọa độ điểm \[H\] là \[\left( {0;5;3} \right).\] Do đó tọa độ \[\overrightarrow {AH} = \left( { - 4;5;3} \right).\]
d) Đúng. Tọa độ điểm \[C\] là \[\left( {0;5;0} \right).\]
Lời giải
Do \(I\) là trọng tâm tam giác \(GBC\) nên ta có: \(\overrightarrow {SI} = \frac{1}{3}\left( {\overrightarrow {SG} + \overrightarrow {SB} + \overrightarrow {SC} } \right)\,\,\,\,\,\,\,\left( 1 \right)\).
Do \(G\) là trọng tâm tam giác \(ABC\) nên ta có: \(\overrightarrow {SG} = \frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right)\,\,\,\,\,\left( 2 \right)\).
Thay \(\left( 2 \right)\) vào \(\left( 1 \right)\) ta có: \(\overrightarrow {SI} = \frac{1}{3}\left( {\frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right) + \overrightarrow {SB} + \overrightarrow {SC} } \right) = \frac{1}{9}\overrightarrow {SA} + \frac{4}{9}\overrightarrow {SB} + \frac{4}{9}\overrightarrow {SC} \).
Vậy \(\left\{ \begin{array}{l}x = \frac{1}{9}\\y = \frac{4}{9}\\z = \frac{4}{9}\end{array} \right. \Rightarrow 9\left( {x - y + z} \right) = 1\).
Đáp án: 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.