Câu hỏi:

14/08/2025 24 Lưu

Trong mặt phẳng toạ độ \[Oxy\], cho đường tròn \(\left( C \right)\): \({\left( {x - 3} \right)^2} + {\left( {y + 7} \right)^2} = 49.\)

a) Tâm của đường tròn \(\left( C \right)\) thuộc hypebol \(\frac{{{x^2}}}{6} - \frac{{{y^2}}}{{98}} = 1\).

b) Đường tròn \(\left( C \right)\) có bán kính \(R = 49.\)

c) Đường tròn \(\left( C \right)\) tiếp xúc với trục hoành.

d) Khoảng cách từ tâm của đường tròn \(\left( C \right)\) đến đường thẳng \(d:3x + 4y - 1 = 0\) bằng 4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Ta thấy điểm \(I\left( {3\,; - 7} \right)\) là tâm đường tròn. Thay tọa độ \(I\) vào phương trình hypebol \(\frac{{{x^2}}}{6} - \frac{{{y^2}}}{{98}} = 1\) ta được \(\frac{{{3^2}}}{6} - \frac{{{{\left( { - 7} \right)}^2}}}{{98}} = 1\) (thỏa mãn).

b) Sai. Đường tròn \(\left( C \right)\) có bán kính \(R = \sqrt {49} = 7.\)

c) Đúng. Ta có \(d\left( {I,Ox} \right) = \frac{{\left| {\left( { - 7} \right) \cdot 1} \right|}}{{\sqrt {{1^2}} }} = 7 = R.\)

d) Đúng. Ta có \(d\left( {I,d} \right) = \frac{{\left| {3 \cdot 3 + 4 \cdot \left( { - 7} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{20}}{5} = 4.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án

Ta có \(\frac{1}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha = 1 + 18 = 19\)\( \Rightarrow {\sin ^2}\alpha = \frac{1}{{19}}\)\( \Rightarrow \sin \alpha = \pm \frac{1}{{\sqrt {19} }}\).

Vì \[\frac{\pi }{2} < \alpha < \pi \]\[ \Rightarrow \sin \alpha > 0\]\[ \Rightarrow \sin \alpha = \frac{1}{{\sqrt {19} }}\].</>

Suy ra \[\tan \frac{\alpha }{2} + \cot \frac{\alpha }{2} = \frac{{{{\sin }^2}\frac{\alpha }{2} + {{\cos }^2}\frac{\alpha }{2}}}{{\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}} = \frac{2}{{\sin \alpha }} = 2\sqrt {19} \approx 8,72\].

Đáp án: \[8,72\].

Lời giải

Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Trên cạnh \(AC\) lấy điểm \(M\) và trên cạnh \(BF\) lấy điểm \(N\) sao cho \(\frac{{AM}}{{AC}} = \frac{{BN}}{{B (ảnh 1)

Ta có \(MN\,{\rm{//}}\,DE\) nên bốn điểm \(M,N,D,E\) đồng phẳng.

Trong mặt phẳng \(\left( {MNED} \right)\), gọi \(I = DM \cap NE \Rightarrow I \in AB,AB = \left( {ABCD} \right) \cap \left( {ABEF} \right)\).

Khi đó: \(\frac{{IM}}{{DM}} = \frac{{IN}}{{NE}}\).

Theo giả thiết, ta có: \(\frac{{AM}}{{AC}} = k\,\,(1) \Rightarrow \frac{{AC - MC}}{{AC}} = k \Rightarrow 1 - \frac{{MC}}{{AC}} = k \Rightarrow \frac{{MC}}{{AC}} = 1 - k\,\,(2).\)

Từ (1) và (2) suy ra \(\frac{{AM}}{{MC}} = \frac{k}{{1 - k}}\); tương tự ta chứng minh được \(\frac{{BN}}{{FN}} = \frac{k}{{1 - k}}\).

Vì \(AB\,{\rm{//}}\,CD\) nên \(\frac{{IM}}{{DM}} = \frac{{IA}}{{DC}} = \frac{{AM}}{{MC}} = \frac{k}{{1 - k}}\);

Vì \(AB\,{\rm{//}}\,EF\) nên \(\frac{{IN}}{{NE}} = \frac{{BI}}{{EF}} = \frac{{BN}}{{NF}} = \frac{k}{{1 - k}}\).

Mặt khác \(\frac{{AI}}{{DC}} + \frac{{BI}}{{EF}} = \frac{{AI}}{{FE}} + \frac{{BI}}{{EF}} = 1 \Rightarrow 2 \cdot \frac{k}{{1 - k}} = 1\)\( \Rightarrow 2k = 1 - k \Rightarrow k = \frac{1}{3}{\rm{. }}\)

Vậy với \(k = \frac{1}{3}\) thì \(MN\,{\rm{//}}\,DE\).