Câu hỏi:

13/08/2025 18 Lưu

Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Gọi A là biến cố ” qua được lần kiểm tra đầu tiên” \[ \Rightarrow P\left( A \right) = 0,98\]

Gọi B là biên cố “qua được lần kiểm tra thứ 2” \[ \Rightarrow P\left( {B|A} \right) = 0,95\]

chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính \[P\left( {A \cap B} \right)\]

ta có \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} \Rightarrow P\left( {A \cap B} \right) = P\left( {B|A} \right).P\left( A \right) = 0,95.0,98 = \frac{{931}}{{1000}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng:

(trai, trai), (gái, gái), (gái, trai), (trai, gái).

Gọi A là biến cố “Cả hai đứa trẻ đều là con gái”

Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

Ta có \[P\left( A \right) = \frac{1}{4};P\left( B \right) = \frac{3}{4}\]

Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

\[P\left( {A \cap B} \right) = P\left( A \right) = \frac{1}{4}\]

Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là

\[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{4}}}{{\frac{3}{4}}} = \frac{1}{3}\]

Lời giải

Chọn A

Gọi \[A\] là biến cố “lần thứ nhất lấy được bi màu đỏ”.

Gọi\[B\]là biến cố “lần thứ hai lấy được bi màu xanh”.

Ta cần tìm \[P\left( {B|A} \right)\]

Không gian mẫu \[n\left( \Omega \right) = 16.15\] cách chọn

Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó \[P\left( A \right) = \frac{{7.15}}{{16.15}} = \frac{7}{{16}}\]

Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó \[P\left( {A \cap B} \right) = \frac{{7.9}}{{16.15}} = \frac{{21}}{{80}}\]

Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{{21}}{{80}}}}{{\frac{7}{{16}}}} = \frac{3}{5}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP