Câu hỏi:

13/08/2025 74 Lưu

Lớp Toán Sư Phạm có 95 Sinh viên, trong đó có 40 nam và 55 nữ. Trong kỳ thi môn Xác suất thống kê có 23 sinh viên đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một sinh viên trong danh sách lớp. Tìm xác suất gọi được sinh viên đạt điểm giỏi môn Xác suất thống kê, biết rằng sinh viên đó là nữ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Gọi A là biến cố “gọi được sinh viên nữ”

Gọi B là biến cố “gọi được sinh viên đạt điểm giỏi môn Xác suất thống kê”,

Ta đi tính \[P\left( {B|A} \right)\]

ta có: \[n\left( A \right) = \frac{{55}}{{95}}\]; \[n\left( {A \cap B} \right) = \frac{{11}}{{95}}\]

Do đó: \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{n\left( {A \cap B} \right)}}{{n\left( A \right)}} = \frac{{11}}{{95}}:\frac{{55}}{{95}} = \frac{{11}}{{55}} = \frac{1}{5}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Gọi \[A\] là biến cố “lần thứ nhất lấy được bi màu đỏ”.

Gọi\[B\]là biến cố “lần thứ hai lấy được bi màu xanh”.

Ta cần tìm \[P\left( {B|A} \right)\]

Không gian mẫu \[n\left( \Omega \right) = 16.15\] cách chọn

Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó \[P\left( A \right) = \frac{{7.15}}{{16.15}} = \frac{7}{{16}}\]

Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó \[P\left( {A \cap B} \right) = \frac{{7.9}}{{16.15}} = \frac{{21}}{{80}}\]

Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{{21}}{{80}}}}{{\frac{7}{{16}}}} = \frac{3}{5}\]

Lời giải

Chọn A

Gọi \[A\] là biến cố “viên bi lấy lần thứ nhất là màu đỏ”.

Gọi \[B\] là biến cố “viên bi lấy lần thứ hai là màu đỏ”.

Ta đi tính \[P\left( {B|A} \right)\] với \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\]

Không gian mẫu \[n\left( \Omega \right) = 10.9\] cách chọn

Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có cách 9 chọn, do đó \[P\left( A \right) = \frac{{7.9}}{{10.9}} = \frac{7}{{10}}\]

Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ trong 6 viên bi còn lại có 6 cách chọn, do đó \[P\left( {A \cap B} \right) = \frac{{7.6}}{{10.9}} = \frac{7}{{15}}\]

Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{7}{{15}}}}{{\frac{7}{{10}}}} = \frac{2}{3}\]

Cách 2:

Sau khi biết viên bi lấy lần thứ nhất là màu đỏ. Khi đó trong hộp còn lại 9 viên: gồm 3 viên bi màu trắng và 6 viên bi màu đỏ. Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất cũng màu đỏ là \[P\left( {B|A} \right) = \frac{6}{9} = \frac{2}{3}\] 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP