Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất M và N lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:
A: “Cây phát triển bình thường trên lô đất M”;
B: “Cây phát triển bình thường trên lô đất N”.
Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất M và N lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:
A: “Cây phát triển bình thường trên lô đất M”;
B: “Cây phát triển bình thường trên lô đất N”.
a) Các cặp biến cố \[\overline A \,\]và B, A và \[\overline B \,\] là độc lập.
Quảng cáo
Trả lời:

a) Do hai lô đất khác nhau. Nên các cặp biến cố \[\overline A \,\]và B, A và \[\overline B \,\] là độc lập. Suy ra đúng.
Câu hỏi cùng đoạn
Câu 2:
b) Hai biến cố \[C = \overline A \, \cap B\,\] và \[D = \,A \cap \overline B \] không là hai biến cố xung khắc.
Lời giải của GV VietJack
b) Do \[C \cap D = \overline A \, \cap A\, \cap B \cap \overline B = \emptyset \] nên hai biến cố C, D xung khắc. Suy ra sai.
Câu 3:
c) P(\[\overline A \,\]) = 0,56; P(\[\overline B \,\]) = 0,62.
Lời giải của GV VietJack
c) Ta có: P(\[\overline A \,\]) = 1 – P(A) = 1 – 0,56 = 0,44; P(\[\overline B \,\]) = 1 – P(B) = l – 0,62 = 0,38. Suy ra sai.
Câu 4:
d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856.
Lời giải của GV VietJack
Xác suất để cây chỉ phát triển bình thường trên một lô đất là:
\[{\rm{P}}\left( {C \cup D} \right) = {\rm{P}}\left( C \right) + {\rm{P}}\left( D \right) = {\rm{P}}\left( {\overline A \,} \right).{\rm{P}}\left( B \right) + {\rm{P}}\left( A \right){\rm{.P}}\left( {\overline B } \right)\,\]
= 0,44. 0,62 + 0,56.0,38 = 0,4856. Suy ra đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xác suất để chiếc mũ thời trang qua được lần kiểm tra thứ hai, biết rằng đã qua được lần kiểm tra thứ nhất, là xác suất có điều kiện \({\rm{P}}(B\mid A)\). Ngoài ra, xác suất để một chiếc mũ thời trang đủ tiêu chuẩn xuất khẩu là \({\rm{P}}(B \cap A)\).
Theo giả thiết, ta có: \({\rm{P}}(B\mid A) = 0,91;{\rm{P}}(A) = 0,96\).
Suy \({\mathop{\rm ra}\nolimits} {\rm{P}}(B \cap A) = {\rm{P}}(A) \cdot {\rm{P}}(B\mid A) = 0,96 \cdot 0,91 = 0,8736\).
Suy ra Đúng
Lời giải
Suy ra \({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{3}{{10}}}}{{\frac{{21}}{{40}}}} = \frac{4}{7}\).
Suy ra Đúng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.