Lớp 12A có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ Tiếng Anh, 16 học sinh tham gia câu lạc bộ Toán, 12 học sinh vừa tham gia câu lạc bộ tiếng Anh vừa tham gia câu lạc bộ Toán. Chọn ngẫu nhiên 1 học sinh. Xét các biến cố sau:
A: “Học sinh được chọn tham gia câu lạc bộ Tiếng Anh”;
B: “Học sinh được chọn tham gia câu lạc bộ Toán”.
Lớp 12A có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ Tiếng Anh, 16 học sinh tham gia câu lạc bộ Toán, 12 học sinh vừa tham gia câu lạc bộ tiếng Anh vừa tham gia câu lạc bộ Toán. Chọn ngẫu nhiên 1 học sinh. Xét các biến cố sau:
A: “Học sinh được chọn tham gia câu lạc bộ Tiếng Anh”;
B: “Học sinh được chọn tham gia câu lạc bộ Toán”.
Các cặp biến cố \[\overline A \,\]và B, A và \[\overline B \,\] là độc lập.
Quảng cáo
Trả lời:
Do hai lô đất khác nhau. Nên các cặp biến cố \[\overline A \,\]và B, A và \[\overline B \,\] là độc lập. Suy ra đúng.
Câu hỏi cùng đoạn
Câu 2:
Hai biến cố \[C = \overline A \, \cap B\,\] và \[D = \,A \cap \overline B \] không là hai biến cố xung khắc.
Lời giải của GV VietJack
Do \[C \cap D = \overline A \, \cap A\, \cap B \cap \overline B = \emptyset \] nên hai biến cố C, D xung khắc. Suy ra sai.
Câu 3:
P(\[\overline A \,\]) = 0,56; P(\[\overline B \,\]) = 0,62.
Lời giải của GV VietJack
Tacó: P(\[\overline A \,\]) = 1 – P(A) = 1 – 0,56 = 0,44; P(\[\overline B \,\]) = 1 – P(B) = l – 0,62 = 0,38. Suy ra sai.
Câu 4:
Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856.
Lời giải của GV VietJack
Xác suất để cây chỉ phát triển bình thường trên một lô đất là:
\[{\rm{P}}\left( {C \cup D} \right) = {\rm{P}}\left( C \right) + {\rm{P}}\left( D \right) = {\rm{P}}\left( {\overline A \,} \right).{\rm{P}}\left( B \right) + {\rm{P}}\left( A \right){\rm{.P}}\left( {\overline B } \right)\,\]
= 0,44. 0,62 + 0,56.0,38 = 0,4856. Suy ra đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Không gian mẫu có số phần từ là 36 .
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 5 , biết rằng xúc xắc thứ nhất xuất hiện mặt 2 chấm, là xác suất có điều kiện \({\rm{P}}(A\mid B)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là xúc xắc thứ nhất xuất hiện mặt 2 chấm và xúc xắc thứ hai xuất hiện mặt 3 chấm nên \({\rm{P}}(A \cap B) = \frac{1}{{36}}\). Có 6 khả năng xảy ra khi xúc xắc thứ nhất xuất hiện mặt 2 chấm nên \({\rm{P}}(B) = \frac{6}{{36}} = \frac{1}{6}\). Suy ra \({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}.\)
Suy ra Đúng
Lời giải
Không gian mẫu có số phần tử là 4 .
Xác suất để đồng xu thứ hai xuất hiện mặt S , biết rằng đồng xu thứ nhất xuất hiện mặt N , là xác suất có điều kiện \({\rm{P}}(A\mid B)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là đồng xu thứ nhất xuất hiện mặt N , đồng xu thứ hai xuất hiện mặt S nên \({\rm{P}}(A \cap B) = \frac{1}{4}\). Có 2 khả năng xảy ra khi đồng xu thứ nhất xuất hiện mặt N nên \({\rm{P}}(B) = \frac{2}{4} = \frac{1}{2}\). Suy ra
\({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{1}{4}}}{{\frac{1}{2}}} = \frac{1}{2}.\)
Suy ra Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.