Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó.
Xét các biến cố:
A: "Tổng số chấm trên hai xúc xắc bằng 5 ";
B: "Xúc xắc thứ nhất xuất hiện mặt 2 chấm".
Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó.
Xét các biến cố:
A: "Tổng số chấm trên hai xúc xắc bằng 5 ";
B: "Xúc xắc thứ nhất xuất hiện mặt 2 chấm".
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 5 , biết rằng xúc xắc thứ nhất xuất hiện mặt 2 chấm, là xác suất có điều kiện \({\rm{P}}(A\mid B)\).
Quảng cáo
Trả lời:
Không gian mẫu có số phần từ là 36 .
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 5 , biết rằng xúc xắc thứ nhất xuất hiện mặt 2 chấm, là xác suất có điều kiện \({\rm{P}}(A\mid B)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là xúc xắc thứ nhất xuất hiện mặt 2 chấm và xúc xắc thứ hai xuất hiện mặt 3 chấm nên \({\rm{P}}(A \cap B) = \frac{1}{{36}}\). Có 6 khả năng xảy ra khi xúc xắc thứ nhất xuất hiện mặt 2 chấm nên \({\rm{P}}(B) = \frac{6}{{36}} = \frac{1}{6}\). Suy ra \({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}.\)
Suy ra Đúng
Câu hỏi cùng đoạn
Câu 2:
\({\rm{P}}(A \cap B) = \frac{1}{6}\).
Không gian mẫu có số phần từ là 36 .
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 5 , biết rằng xúc xắc thứ nhất xuất hiện mặt 2 chấm, là xác suất có điều kiện \({\rm{P}}(A\mid B)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là xúc xắc thứ nhất xuất hiện mặt 2 chấm và xúc xắc thứ hai xuất hiện mặt 3 chấm nên \({\rm{P}}(A \cap B) = \frac{1}{{36}}\). Có 6 khả năng xảy ra khi xúc xắc thứ nhất xuất hiện mặt 2 chấm nên \({\rm{P}}(B) = \frac{6}{{36}} = \frac{1}{6}\). Suy ra \({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}.\)
Suy ra Sai
Câu 3:
\({\rm{P}}(B) = \frac{1}{6}\).
Không gian mẫu có số phần từ là 36 .
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 5 , biết rằng xúc xắc thứ nhất xuất hiện mặt 2 chấm, là xác suất có điều kiện \({\rm{P}}(A\mid B)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là xúc xắc thứ nhất xuất hiện mặt 2 chấm và xúc xắc thứ hai xuất hiện mặt 3 chấm nên \({\rm{P}}(A \cap B) = \frac{1}{{36}}\). Có 6 khả năng xảy ra khi xúc xắc thứ nhất xuất hiện mặt 2 chấm nên \({\rm{P}}(B) = \frac{6}{{36}} = \frac{1}{6}\). Suy ra \({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}.\)
Suy ra Đúng
Câu 4:
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 5 , biết rằng xúc xắc thứ nhất xuất hiện mặt 2 chấm, là \(\frac{1}{6}\).
Không gian mẫu có số phần từ là 36 .
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 5 , biết rằng xúc xắc thứ nhất xuất hiện mặt 2 chấm, là xác suất có điều kiện \({\rm{P}}(A\mid B)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là xúc xắc thứ nhất xuất hiện mặt 2 chấm và xúc xắc thứ hai xuất hiện mặt 3 chấm nên \({\rm{P}}(A \cap B) = \frac{1}{{36}}\). Có 6 khả năng xảy ra khi xúc xắc thứ nhất xuất hiện mặt 2 chấm nên \({\rm{P}}(B) = \frac{6}{{36}} = \frac{1}{6}\). Suy ra \({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}.\)
Suy ra Đúng
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Không gian mẫu có số phần tử là 4 .
Xác suất để đồng xu thứ hai xuất hiện mặt S , biết rằng đồng xu thứ nhất xuất hiện mặt N , là xác suất có điều kiện \({\rm{P}}(A\mid B)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là đồng xu thứ nhất xuất hiện mặt N , đồng xu thứ hai xuất hiện mặt S nên \({\rm{P}}(A \cap B) = \frac{1}{4}\). Có 2 khả năng xảy ra khi đồng xu thứ nhất xuất hiện mặt N nên \({\rm{P}}(B) = \frac{2}{4} = \frac{1}{2}\). Suy ra
\({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{1}{4}}}{{\frac{1}{2}}} = \frac{1}{2}.\)
Suy ra Đúng.
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.