Câu hỏi:

11/09/2025 457 Lưu

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị \(\left( C \right)\). Biết \(y = f'\left( x \right)\) có đồ thị như hình vẽ và tâm đối xứng của đồ thị \(\left( C \right)\) thuộc trục hoành. Tính khoảng cách giữa hai điểm cực trị của đồ thị \(\left( C \right)\). (Quy tròn kết quả đến hàng phần trăm).

Ảnh có chứa hàng, biểu đồ, Sơ đồ

Mô tả được tạo tự động

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Parabol \(y' = f'\left( x \right) = 3a{x^2} + 2bx + c\) có đỉnh \(\left( {2;\,\, - 1} \right)\) và đi qua \(O\left( {0;\,\,0} \right)\) nên ta có hệ phương trình

\[\left\{ {\begin{array}{*{20}{c}}{ - \frac{{2b}}{{6a}} = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\begin{array}{l}12a + 4b + c = - 1\\c = 0\end{array}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = \frac{1}{{12}}\\b = - \frac{1}{2}\end{array}\\{c = 0\,\,\,\,\,}\end{array}} \right.\].

Tâm đối xứng của \(\left( C \right)\) thuộc trục hoành nên suy ra tâm đối xứng có toạ độ \(\left( {2;\,\,0} \right)\).

Do đó \(\frac{{{2^3}}}{{12}} - \frac{{{2^2}}}{2} + d = 0 \Leftrightarrow d = \frac{4}{3}\).

Khi đó, đồ thị hàm số \(y = f\left( x \right) = \frac{{{x^3}}}{{12}} - \frac{{{x^2}}}{2} + \frac{4}{3}\) có hai điểm cực trị là \(A\left( {0;\,\,\frac{4}{3}} \right)\)\(B\left( {4;\,\, - \frac{4}{3}} \right)\).

Vậy \(AB = \sqrt {{4^2} + {{\left( { - \frac{8}{3}} \right)}^2}} = \frac{{4\sqrt {13} }}{3} \approx 4,81\).

Đáp án: 4,81.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

A yellow rectangular sign with black text

Description automatically generated

Thời gian nếu đi trực tiếp từ A đến B trên sa mạc là \(\frac{{70}}{{30}} = \frac{7}{3} > 2\).

Do đó, nhà địa chất học không thể đến đúng thời gian quy định.

Vì vậy cần thiết phải chia quãng đường đi được thành 3 giai đoạn: \(A \to C \to D \to B\).

Đặt \(HC = x\,\,\left( {0 < x < 70} \right);DK = y\,\,\left( {0 < y < 70} \right)\).

Thời gian đi từ \(A \to C\) \(\frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}}\).

Thời gian đi từ \(C \to D\) \(\frac{{70 - \left( {x + y} \right)}}{{50}}\).

Thời gian đi từ \(D \to B\) \(\frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}}\).

Tổng thời gian đi từ \(A \to B\) theo cách này là:

 \(\frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}} + \frac{{70 - \left( {x + y} \right)}}{{50}} + \frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}} = \frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}} + \frac{{35 - x}}{{50}} + \frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}} + \frac{{35 - y}}{{50}} = f\left( x \right) + f\left( y \right)\).

Xét \(f\left( u \right) = \frac{{\sqrt {{{10}^2} + {u^2}} }}{{30}} + \frac{{35 - u}}{{50}}\), \(0 < u < 70\).

Ta có \(f'\left( u \right) = \frac{u}{{30\sqrt {{{10}^2} + {u^2}} }} - \frac{1}{{50}};f'\left( u \right) = 0 \Rightarrow u = \frac{{15}}{2}\).

Lập bảng biến thiên ta được \(\mathop {\min }\limits_{u \in \left( {0;70} \right)} f\left( u \right) = f\left( {\frac{{15}}{2}} \right) = \frac{{29}}{{30}}\).

Khi đó \(f\left( x \right) + f\left( y \right) \ge \frac{{29}}{{30}} + \frac{{29}}{{30}} = \frac{{29}}{{15}} \approx 1,93\).

Dấu “=” xảy ra khi \(x = y = \frac{{15}}{2}\).

Vậy để đến B sớm nhất thì ông ta phải đi trên đoạn AC một khoảng 12,5 km, đoạn CD một khoảng 45 km và đi trên đoạn DB một khoảng 12,5 km.

Lời giải

A diagram of a physics diagram

AI-generated content may be incorrect.

Ta có \(\overrightarrow P = m\overrightarrow g \) nên \(P = \left| {\overrightarrow P } \right| = m \cdot \left| {\overrightarrow g } \right| = 10\) (N).

Bóng đèn ở vị trí cân bằng nên \(\overrightarrow P + \overrightarrow {{T_1}} + \overrightarrow {{T_2}} = \overrightarrow 0 \) hay \(\overrightarrow P = - \overrightarrow {T'} \) với \(\overrightarrow {T'} = \overrightarrow {{T_1}} + \overrightarrow {{T_2}} \).

Suy ra \(T' = P = 10\,{\rm{N}}\). Vì \({T_1} = {T_2}\)\(\left( {\overrightarrow {{T_1}} ,\,\overrightarrow {{T_2}} } \right) = 60^\circ \) nên

\(\frac{{T'}}{2} = {T_1} \cdot \cos 30^\circ \Rightarrow {T_1} = \frac{{10}}{{\sqrt 3 }} = \frac{{10\sqrt 3 }}{3}\) (N).

Vậy lực căng của mỗi nửa sợi dây là \(\frac{{10\sqrt 3 }}{3}\,{\rm{N}}\).

Câu 4

A. \(\left( { - 1;\;3} \right)\).  
B. \(\left( {1;\;0} \right)\).      
C. \(\left( {1;\; - 1} \right)\).      
D. \(\left( {0;\;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).

a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\]\(\left( {3; + \infty } \right)\).

b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\).

c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).

d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = - 1\).  
B. \(x = \frac{1}{3}\). 
C. \(y = - \frac{1}{3}\).         
D. \(x = - \frac{1}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP