B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = \frac{{ - 2x - 3}}{{x + 3}} \cdot \)
a) Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 3; + \infty } \right).\)
b) Đồ thị hàm số có tiệm cận ngang \(y = - 3.\)
c) Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {0;{\rm{ 2025}}} \right]\) là \(f\left( 0 \right)\).
d) Khoảng cách từ tâm đối xứng của đồ thị hàm số đến trục hoành bé hơn \(3.\)
B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right) = \frac{{ - 2x - 3}}{{x + 3}} \cdot \)
a) Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 3; + \infty } \right).\)
b) Đồ thị hàm số có tiệm cận ngang \(y = - 3.\)
c) Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {0;{\rm{ 2025}}} \right]\) là \(f\left( 0 \right)\).
d) Khoảng cách từ tâm đối xứng của đồ thị hàm số đến trục hoành bé hơn \(3.\)Quảng cáo
Trả lời:
a) Sai. Ta có \(f\left( x \right) = \frac{{ - 3}}{{{{\left( {x + 3} \right)}^2}}} < 0 \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 3; + \infty } \right).\)
b) Sai. Đồ thị hàm số có tiệm cận ngang \(y = \frac{{ - 2}}{1} = - 2.\)
c) Sai. Hàm số nghịch biến trên \(\left( { - 3; + \infty } \right) \Rightarrow f\left( 0 \right) > f\left( {2025} \right) \Rightarrow \) Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {0;{\rm{ 2025}}} \right]\) là \[f\left( {2025} \right).\]
d) Đúng. Tâm đối xứng của đồ thị hàm số là \(I\left( { - 3; - 2} \right)\). Ta có \(d\left( {I,Ox} \right) = \left| { - 2} \right| = 2 < 3.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng. \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot BC \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = 5\), tương tự \(AD = 5\).
\(M\) là trung điểm \(CD\)\( \Rightarrow AM \bot MC\) (do \(\Delta ACD\) cân tại \(A\))\( \Rightarrow \overrightarrow {AM} \cdot \overrightarrow {MC} = 0\).
b) Sai. Ta có \(\left| {\overrightarrow {AD} + 2\overrightarrow {MC} } \right| = \left| {\overrightarrow {AD} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = 5\).
c) Đúng. Ta có \(G\) là trọng tâm tam giác \(BCD\)\( \Rightarrow \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \) .
\(\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = \overrightarrow {AG} + \overrightarrow {GB} + \overrightarrow {AG} + \overrightarrow {GC} + \overrightarrow {AG} + \overrightarrow {GD} \)
\( = 3\overrightarrow {AG} + \left( {\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} } \right) = 3\overrightarrow {AG} + \overrightarrow 0 = 3\overrightarrow {AG} \).
\( \Rightarrow \overrightarrow {AG} = \frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\).
d) Sai. Từ đẳng thức \(\overrightarrow {AG} = \frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\), ta suy ra\(AG < \frac{1}{3}\left( {\left| {\vec a} \right| + \left| {\vec b} \right| + \left| {\vec c} \right|} \right) = \frac{1}{3}\left( {4 + 5 + 5} \right) = \frac{{14}}{3}\).
Ngoài ra, ta có thể tính \(AG\) bằng định lý Pythagore.
Ta có \(BG = \frac{2}{3}BM = \frac{2}{3} \cdot \frac{{3\sqrt 3 }}{2} = \sqrt 3 \). Khi đó, \(AG = \sqrt {B{G^2} + A{B^2}} = \sqrt {19} < \frac{{14}}{3}\).
Lời giải
Gọi \[M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{x_0^2 + 4{x_0} + 5}}{{{x_0} + 2}}} \right)\].
Gọi \[\left( d \right)\] là khoảng cách từ \[M\] đến đường thẳng \[3x + y + 6 = 0\].
Ta có \[d = \frac{1}{{\sqrt {10} }}\left| {\frac{{4x_0^2 + 16{x_0} + 17}}{{{x_0} + 2}}} \right| = \frac{1}{{\sqrt {10} }}\left| {4\left( {{x_0} + 2} \right) + \frac{1}{{{x_0} + 2}}} \right| \ge \frac{4}{{\sqrt {10} }}\].
Đẳng thức xảy ra \[ \Leftrightarrow 4\left| {{x_0} + 2} \right| = \frac{1}{{\left| {{x_0} + 2} \right|}} \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 3}}{2} \Rightarrow {y_0} = \frac{5}{2}\\{x_0} = \frac{{ - 5}}{2} \Rightarrow {y_0} = - \frac{5}{2}\end{array} \right.\].
Vậy có hai điểm thoả yêu cầu bài toán là \[{M_1}\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right)\] và \[{M_2}\left( {\frac{{ - 5}}{2};\frac{{ - 5}}{2}} \right)\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

