Câu hỏi:

11/09/2025 343 Lưu

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\). Hàm số có bảng xét dấu của đạo hàm như sau:

Cho hàm số y=f(x)  xác định và liên tục trên R . Hàm số có bảng xét dấu của đạo hàm như sau:    Số điểm cực trị của hàm số là (ảnh 1)

Số điểm cực trị của hàm số là

A. \(3\).           
B. \(2\).           
C. \(1\).           
D. \(4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Hàm số đạt cực trị tại \(x = 1;\,\,x = 3;\,\,x = 4\). Số điểm cực trị của hàm số là 3. Chọn A

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = 1\).                           

 

B. \(y = 2\).                        

C. \(x = 1\).     
D. \(x = 2\).

Lời giải

Từ hình vẽ ta thấy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình \(y = 1\). Chọn A.

 

Lời giải

a) Sai. Quan sát hình vẽ, ta thấy:

Hàm số đã cho có tập xác định là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

Trên các khoảng \(\left( { - \infty ; - 3} \right)\)\(\left( { - 1;\, + \infty } \right)\), đồ thị hàm số đi lên từ trái qua phải nên hàm số đã cho đồng biến trên mỗi khoảng này.  

Trên các khoảng \(\left( { - 3; - 2} \right)\)\(\left( { - 2;\, - 1} \right)\), đồ thị hàm số đi xuống từ trái qua phải nên hàm số đã cho nghịch biến trên mỗi khoảng này.  

b) Đúng. Hàm số đã cho đạt cực đại tại \(x = - 3\); đạt cực tiểu tại \(x = - 1\).

c) Sai. Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x = - 2\).

d) Đúng.\(x = - 2\) là tiệm cận đứng nên \(n = 2\). Khi đó, \(y = f\left( x \right) = \frac{{a{x^2} + bx + c}}{{x + 2}}\).

Ta có \(y' = \frac{{a{x^2} + 4ax + 2b - c}}{{{{\left( {x + 2} \right)}^2}}}\); \(y' = 0 \Leftrightarrow a{x^2} + 4ax + 2b - c = 0\) (*).

\(x = - 1\) là một nghiệm của phương trình (*), do đó \( - 3a + 2b - c = 0\).

Các điểm \(\left( { - 1;1} \right)\), \(\left( { - 3; - 3} \right)\) thuộc đồ thị hàm số đã cho nên tọa độ các điểm này thỏa mãn hàm số \(y = f\left( x \right) = \frac{{a{x^2} + bx + c}}{{x + 2}}\).

Khi đó, ta có hệ phương trình sau: \(\left\{ \begin{array}{l} - 3a + 2b - c = 0\\a - b + c = 1\\ - 9a + 3b - c = - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 3\\c = 3\end{array} \right.\).

Vậy công thức xác định hàm số đã cho là \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).

Câu 3

A. \[M = f\left( { - 1} \right)\].                               
B. \[M = f\left( 3 \right)\].          
C. \(M = f\left( 2 \right)\).                                      
D. \(M = f\left( 0 \right)\).       

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP