Câu hỏi:

11/09/2025 216 Lưu

Cho hàm số \[y = f\left( x \right)\] liên tục và có bảng biến thiên trên đoạn \(\left[ { - 1;\,3} \right]\) như hình dưới đây.

A diagram of a mathematical equation

Description automatically generated

Gọi \(M\) là giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 1;\,\,3} \right]\]. Mệnh đề nào trong các mệnh đề sau đây là đúng?

A. \[M = f\left( { - 1} \right)\].                               
B. \[M = f\left( 3 \right)\].          
C. \(M = f\left( 2 \right)\).                                      
D. \(M = f\left( 0 \right)\).       

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ bảng biến thiên, ta thấy \[M = \mathop {\max }\limits_{\left[ { - 1;\,3} \right]} f\left( x \right) = f\left( 0 \right) = 5\]. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = 1\).                           

 

B. \(y = 2\).                        

C. \(x = 1\).     
D. \(x = 2\).

Lời giải

Từ hình vẽ ta thấy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình \(y = 1\). Chọn A.

 

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} \frac{{{x^2} - 3x + 1}}{{2x - 1}} = - \infty \), suy ra đường thẳng \(x = \frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\).

Ta có \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x + 1}}{{2{x^2} - x}} = \frac{1}{2}\);

\(b = \mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) - ax} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^2} - 3x + 1}}{{2x - 1}} - \frac{1}{2}x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 5x + 2}}{{4x - 2}} = - \frac{5}{4}\).

Suy ra đường thẳng \(y = \frac{1}{2}x - \frac{5}{4}\) là tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\).

Vậy điểm \(I\left( {\frac{1}{2};\, - 1} \right)\), khi đó \(\frac{1}{2} + \left( { - 1} \right) = - \frac{1}{2} = - 0,5\).

Đáp án: \( - 0,5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP