Kiểm tra khối lượng của 30 bao thạch cao (đơn vị: kg) được chọn ngẫu nhiên trước khi xuất xưởng cho kết quả như bảng ghép lớp sau

(a) Cỡ mẫu của mẫu số liệu là 40.
(b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 3.
(c) Giá trị trung bình của mẫu số liệu ghép nhóm là 50,32.
(d) Khoảng tứ phân vị của bảng ghép nhóm là 3.
Quảng cáo
Trả lời:

a) Cỡ mẫu n = 6 + 2 + 4 + 4 + 6 + 8 = 30.
b) Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 51,5 – 48,5 = 3.
c)

Có \(\overline x = \frac{{48,75.6 + 49,25.2 + 49,75.4 + 50,25.4 + 50,75.6 + 51,25.8}}{{30}} \approx 50,18\).
d) Gọi x1; x2; ...; x30 là khối lượng của 30 bao thạch cao được sắp theo thứ tự không giảm.
Ta có Q1 = x8 [49; 49,5) nên nhóm này chứa tứ phân vị thứ nhất.
Có \({Q_1} = 49 + \frac{{\frac{{30}}{4} - 6}}{2}.0,5 = \frac{{395}}{8}\).
Q3 = x23 [51; 51,5) nên nhóm này chứa tứ phân vị thứ ba.
Có \({Q_3} = 51 + \frac{{\frac{{3.30}}{4} - 22}}{8}.0,5 = \frac{{1633}}{{32}}\).
Khoảng tứ phân vị \({\Delta _Q} = \frac{{1633}}{{32}} - \frac{{395}}{8} = \frac{{53}}{{32}}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là R = 10 – 5 = 5.
b) Xét mẫu số liệu khu vực A:
Cỡ mẫu n = 4 + 5 + 5 + 4 + 2 = 20.
Gọi x1; x2; …; x20 là mức lương khởi điểm của 20 công nhân được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_5} + {x_6}}}{2}\) mà x5; x6 [6; 7) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 6 + \frac{{\frac{{20}}{4} - 4}}{5}.1 = 6,2\).
Ta có \({Q_3} = \frac{{{x_{15}} + {x_{16}}}}{2}\) mà x15; x16 [8; 9) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 8 + \frac{{\frac{{3.20}}{4} - 14}}{4}.1 = \frac{{33}}{4}\).
Suy ra \({\Delta _Q} = \frac{{33}}{4} - 6,2 \approx 2,1\).
c) Xét mẫu số liệu khu vực B.
Có cỡ mẫu n = 3 + 6 + 5 + 5 + 1 = 20.
Gọi y1; y2; …; y20 lần lượt là mức lương khởi điểm của công nhân khu vực B được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{y_5} + {y_6}}}{2}\) mà y5; y6 [6; 7) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 6 + \frac{{\frac{{20}}{4} - 3}}{6}.1 = \frac{{19}}{3}\).
Ta có \({Q_3} = \frac{{{y_{15}} + {y_{16}}}}{2}\) mà y15; y16 [8; 9) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 8 + \frac{{\frac{{3.20}}{4} - 14}}{5}.1 = \frac{{41}}{5}\).
Suy ra \({\Delta _Q} = \frac{{41}}{5} - \frac{{19}}{3} \approx 1,9\).
d) Mức lương khởi điểm của khu vực B phân bố đồng đều hơn.
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Câu 2
15,25.
20.
4,75.
5,2.
Lời giải
Đáp án đúng: C
Ta có n = 3 + 12 + 15 + 24 + 2 = 56.
Gọi x1; x2; ...; x56 lần lượt là thời gian truy cập internet mỗi buổi tối của 56 học sinh được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_{14}} + {x_{15}}}}{2}\) mà x14; x15 [12,5; 15,5) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 12,5 + \frac{{\frac{{56}}{4} - 3}}{{12}}.3 = 15,25\).
Ta có \({Q_3} = \frac{{{x_{42}} + {x_{43}}}}{2}\) mà \({x_{42}};{x_{43}} \in \left[ {18,5;21,5} \right)\)nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 18,5 + \frac{{\frac{{3.56}}{4} - 30}}{{24}}.3 = 20\).
Do đó \({\Delta _Q} = 20 - 15,25 = 4,75\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.