Câu hỏi:

04/09/2025 32 Lưu

Cho hình chóp \(S.ABCD\) có đáy \[ABCD\] là hình bình hành. Mặt phẳng \[\left( \alpha \right)\] qua \[BD\] và song song với \[SA\], mặt phẳng \[\left( \alpha \right)\] cắt \(SC\) tại \[K\]. Biết \[SK = mKC\], với \[m\] là số hữu tỉ. Xác định \(m\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

EEEE (ảnh 1)

Gọi \[O\] là giao điểm của \[AC\]\[BD\]. Do mặt phẳng \[\left( \alpha \right)\]qua \[BD\] nên \[O \in \left( \alpha \right)\].

Trong tam giác \[SAC\], kẻ \[OK\] song song với \[SA\,\,\left( {K \in SC} \right)\].

Do \[\left\{ \begin{array}{l}\left( \alpha \right)\,{\rm{//}}\,SA\\OK\,{\rm{//}}\,SA\\O \in \left( \alpha \right)\end{array} \right. \Rightarrow OK \subset \left( \alpha \right) \Rightarrow SC \cap \left( \alpha \right) = \left\{ K \right\}\].

Trong tam giác \[SAC\] ta có \[\left\{ \begin{array}{l}OK{\rm{//}}SA\\OA = OC\end{array} \right. \Rightarrow OK\] là đường trung bình của \[\Delta SAC\].

Suy ra \[SK = KC\]. Mà theo giả thiết ta có \[SK = mKC\]. Do đó \[m = 1\].

Đáp án: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(A = \cos \left( {5\pi - x} \right) - \sin \left( {\frac{{3\pi }}{2} + x} \right) + \tan \left( {\frac{{3\pi }}{2} - x} \right) + \cot \left( {3\pi - x} \right)\)

\( = \cos \left( {4\pi + \pi - x} \right) - \sin \left( {2\pi - \frac{\pi }{2} + x} \right) + \tan \left( {\pi + \frac{\pi }{2} - x} \right) + \cot \left( { - x} \right)\)

\( = \cos \left( {\pi - x} \right) + \sin \left( {\frac{\pi }{2} - x} \right) + \tan \left( {\frac{\pi }{2} - x} \right) - \cot x\)

\( = - \cos x + \cos x + \cot x - \cot x = 0\).

Đáp án: 0.

Lời giải

Phương trình \(\cos 2x = m - 1\) có nghiệm khi và chỉ khi \( - 1 \le m - 1 \le 1 \Leftrightarrow 0 \le m \le 2.\)

\(m \in \mathbb{Z}\) nên \(m \in \left\{ {0\,;\,1\,;\,2} \right\}\). Vậy có 3 giá trị nguyên của tham số \(m\) thỏa mãn.

Đáp án: \[3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = \frac{{k\pi }}{2},k \in \mathbb{Z}.\)           
B. \(x = k\pi ,k \in \mathbb{Z}.\)                  
C. \(x = k2\pi ,k \in \mathbb{Z}.\)                          
D. \(x = \frac{{k\pi }}{6},k \in \mathbb{Z}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Số hạng thứ \[103\].     
B. Số hạng thứ \[102\].      
C. Số hạng thứ \[101\].                                   
D. Số hạng thứ \[104\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP