Câu hỏi:

04/09/2025 21 Lưu

PHẦN II. TỰ LUẬN

Một vòng quay Mặt Trời quay quanh trục mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách \[h\,{\rm{(m)}}\] từ một cabin \(M\) trên vòng quay đến mặt đất được tính bởi công thức \[h\left( t \right) = a\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + b\], với \[t\] là thời gian quay của vòng quay tính bằng phút (\[t \ge 0\]). Biết rằng khi lên đến vị trí cao nhất cabin \(M\) cách mặt đất \(114,5\) m và khi xuống đến vị trí thấp nhất cabin \(M\) cách mặt đất \(0,5\) m.

a) Tìm \[a,{\rm{ }}b\].

b) Xác định thời điểm cabin \(M\) đạt được chiều cao \(86\) m trong vòng quay đầu tiên tính từ thời điểm \[t = 0\] (phút).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \[ - a + b \le h\left( t \right) = a\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + b \le a + b,\forall t\].

Theo bài ra: \[\left\{ \begin{array}{l}a + b = 114,5\\ - a + b = 0,5\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 57\\b = 57,5\end{array} \right.\].

Suy ra \[h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\].

b) Cabin \(M\) đạt được chiều cao \(86\) m khi \[h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5 = 86\]

\[ \Leftrightarrow \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \\\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 5 + 15k\\t = 10 + 15k\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right).\]

Vậy trong vòng quay đầu tiên cabin \(M\) đạt được chiều cao \(86\) m tại thời điểm \(t = 5\) phút hoặc \(t = 10\) phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(A = \cos \left( {5\pi - x} \right) - \sin \left( {\frac{{3\pi }}{2} + x} \right) + \tan \left( {\frac{{3\pi }}{2} - x} \right) + \cot \left( {3\pi - x} \right)\)

\( = \cos \left( {4\pi + \pi - x} \right) - \sin \left( {2\pi - \frac{\pi }{2} + x} \right) + \tan \left( {\pi + \frac{\pi }{2} - x} \right) + \cot \left( { - x} \right)\)

\( = \cos \left( {\pi - x} \right) + \sin \left( {\frac{\pi }{2} - x} \right) + \tan \left( {\frac{\pi }{2} - x} \right) - \cot x\)

\( = - \cos x + \cos x + \cot x - \cot x = 0\).

Đáp án: 0.

Lời giải

Ta có \(\frac{\pi }{{12}}{\rm{ = }}\frac{{180^\circ }}{{12}} = 15^\circ \). Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP