PHẦN II. TỰ LUẬN
Một vòng quay Mặt Trời quay quanh trục mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách \[h\,{\rm{(m)}}\] từ một cabin \(M\) trên vòng quay đến mặt đất được tính bởi công thức \[h\left( t \right) = a\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + b\], với \[t\] là thời gian quay của vòng quay tính bằng phút (\[t \ge 0\]). Biết rằng khi lên đến vị trí cao nhất cabin \(M\) cách mặt đất \(114,5\) m và khi xuống đến vị trí thấp nhất cabin \(M\) cách mặt đất \(0,5\) m.
a) Tìm \[a,{\rm{ }}b\].
b) Xác định thời điểm cabin \(M\) đạt được chiều cao \(86\) m trong vòng quay đầu tiên tính từ thời điểm \[t = 0\] (phút).
PHẦN II. TỰ LUẬN
Một vòng quay Mặt Trời quay quanh trục mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách \[h\,{\rm{(m)}}\] từ một cabin \(M\) trên vòng quay đến mặt đất được tính bởi công thức \[h\left( t \right) = a\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + b\], với \[t\] là thời gian quay của vòng quay tính bằng phút (\[t \ge 0\]). Biết rằng khi lên đến vị trí cao nhất cabin \(M\) cách mặt đất \(114,5\) m và khi xuống đến vị trí thấp nhất cabin \(M\) cách mặt đất \(0,5\) m.
a) Tìm \[a,{\rm{ }}b\].
b) Xác định thời điểm cabin \(M\) đạt được chiều cao \(86\) m trong vòng quay đầu tiên tính từ thời điểm \[t = 0\] (phút).
Quảng cáo
Trả lời:

a) Ta có \[ - a + b \le h\left( t \right) = a\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + b \le a + b,\forall t\].
Theo bài ra: \[\left\{ \begin{array}{l}a + b = 114,5\\ - a + b = 0,5\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 57\\b = 57,5\end{array} \right.\].
Suy ra \[h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\].
b) Cabin \(M\) đạt được chiều cao \(86\) m khi \[h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5 = 86\]
\[ \Leftrightarrow \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \\\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 5 + 15k\\t = 10 + 15k\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right).\]
Vậy trong vòng quay đầu tiên cabin \(M\) đạt được chiều cao \(86\) m tại thời điểm \(t = 5\) phút hoặc \(t = 10\) phút.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(A = \cos \left( {5\pi - x} \right) - \sin \left( {\frac{{3\pi }}{2} + x} \right) + \tan \left( {\frac{{3\pi }}{2} - x} \right) + \cot \left( {3\pi - x} \right)\)
\( = \cos \left( {4\pi + \pi - x} \right) - \sin \left( {2\pi - \frac{\pi }{2} + x} \right) + \tan \left( {\pi + \frac{\pi }{2} - x} \right) + \cot \left( { - x} \right)\)
\( = \cos \left( {\pi - x} \right) + \sin \left( {\frac{\pi }{2} - x} \right) + \tan \left( {\frac{\pi }{2} - x} \right) - \cot x\)
\( = - \cos x + \cos x + \cot x - \cot x = 0\).
Đáp án: 0.
Lời giải
Ta có \(\frac{\pi }{{12}}{\rm{ = }}\frac{{180^\circ }}{{12}} = 15^\circ \). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.