Câu hỏi:

10/09/2025 14 Lưu

Cho \(\Delta ABC\) có đường cao \(AH.\) Gọi \(M\) là trung điểm của \(AC,\) lấy điểm \(N\) sao cho \(M\) là trung điểm của \(HN.\) Biết rằng diện tích \(\Delta AHC\) bằng \(20\;{\rm{c}}{{\rm{m}}^2}.\)

          a) \(HM = \frac{1}{3}AC.\)

          b) Tứ giác \(AHCN\) là hình chữ nhật.

          c) \(\widehat {ANC} = 90^\circ .\)

          d) Diện tích \(\Delta ANC\) bằng \(30\;{\rm{c}}{{\rm{m}}^2}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

nnnnn (ảnh 1)

a) Sai.

\(AH\) là đường cao của tam giác \(ABC\) nên \(\widehat {AHC} = 90^\circ .\) Do đó, tam giác \(AHC\) vuông tại \(H.\)\(HM\) là đường trung tuyến ứng với cạnh huyền \(AC.\) Do đó, \(HM = \frac{1}{2}AC.\)

b) Đúng.

Tứ giác \(AHCN\) có: \(M\) là giao điểm của hai đường chéo \(AC,\;HN;\) \(M\) là trung điểm của \(AC,\;M\) là trung điểm của \(HN.\) Do đó, tứ giác \(AHCN\) là hình bình hành.

Lại có: \(\widehat {AHC} = 90^\circ \) nên tứ giác \(AHCN\) là hình chữ nhật.

c) Đúng.

Vì tứ giác \(AHCN\) là hình chữ nhật nên \(\widehat {ANC} = 90^\circ .\)

d) Sai.

tứ giác \(ABCD\) là hình chữ nhật nên \(AH = NC,\;AN = HC.\)

Vì diện tích tam giác \(AHC\) bằng \(20\;{\rm{c}}{{\rm{m}}^2}\) nên: \(\frac{1}{2} \cdot AH \cdot HC = 20\;{\rm{c}}{{\rm{m}}^2}.\)

Diện tích tam giác \(ANC\) vuông tại \(N\) là: \(S = \frac{1}{2}AN \cdot NC = \frac{1}{2} \cdot AH \cdot HC = 20\;{\rm{c}}{{\rm{m}}^2}.\)

Vậy diện tích tam giác \(ANC\) bằng \(20\;{\rm{c}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

bbbb (ảnh 1)

a) Đúng.

\(G\) là giao điểm của hai đường trung tuyến \(BM,\;CN\) của \(\Delta ABC\) nên \(G\) là trọng tâm của \(\Delta ABC.\)

b) Sai.

Vì tam giác \(ABC\) cân tại \(A\) nên \(AB = AC,\;\widehat {ABC} = \widehat {ACB}.\)

\(M\) là trung điểm của \(AC\) nên \(AM = MC = \frac{1}{2}AC.\)

\(N\) là trung điểm của \(AB\) nên \(AN = NB = \frac{1}{2}AB.\)

Do đó, \(AN = NB = AM = MC.\)

Tam giác \(BMC\) và tam giác \(CNB\) có: \(\widehat {MCB} = \widehat {NBC}\;\left( {cmt} \right),\;MC = BN\;\left( {cmt} \right),\;BC\;{\rm{chung}}{\rm{.}}\)

Do đó, \(\Delta BMC = \Delta CNB\;\left( {c - g - c} \right).\)

c) Đúng.

\(\Delta BMC = \Delta CNB\;\left( {cmt} \right)\) nên \(BM = CN.\)

\(G\) là trọng tâm của \(\Delta ABC\) nên \(GC = \frac{2}{3}CN,\;BG = \frac{2}{3}BM.\) Suy ra: \(GB = GC.\)

\(GD = GB,\;GE = GC\) nên \(GD = GB = GE = GC.\) Suy ra: \(EG + GC = BG + GD\) hay \(BD = CE.\)

d) Đúng.

Tứ giác \(BEDC\) có hai đường chéo \(CE,\;BD\) cắt nhau tại \(G;\;\) \(G\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(EC.\) Do đó, tứ giác \(BEDC\) là hình bình hành. Mà \(BD = CE\) nên tứ giác \(BEDC\) là hình chữ nhật. Do đó, \(\widehat {EBC} = 90^\circ .\)

Lời giải

Đáp án: \(10\)

Tứ giác \(ABED\) có: \(\widehat A = \widehat B = \widehat {BED} = \widehat {EDA} = 90^\circ \) nên tứ giác \(ABED\) là hình chữ nhật.

Do đó, \(EB = AD = 4\;{\rm{m,}}\;AB = DE.\)

Ta có: \(EC = CB - BE = 10 - 4 = 6\;\left( {\rm{m}} \right).\)

Diện tích tam giác \(DEC\) vuông tại \(E\) bằng \(30\;{{\rm{m}}^2}\) nên

\(\frac{1}{2}EC \cdot DE = 30\) \(\)

\(\frac{1}{2} \cdot 6 \cdot DE = 30\)

\(DE = 10\;{\rm{m}}.\)

Do đó, \(AB = DE = 10\;{\rm{m}}.\) Vậy \(AB = 10\;{\rm{m}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP