Câu hỏi:

10/09/2025 39 Lưu

Cho tam giác \(ABC\) cân tại \(A\)\(M,\;N\) lần lượt là trung điểm của \(AC,\;AB.\) Gọi \(G\) là giao điểm của \(BM\)\(CN.\) Trên tia đối của \(GB,\;GC\) lần lượt lấy các điểm \(D,\;E\) sao cho \(GD = GB,\;GE = GC.\)

          a) \(G\) là trọng tâm của tam giác \(ABC.\)

          b) \(\Delta BMC = \Delta BCN.\)

          c) \(BD = CE.\)

          d) \(\widehat {EBC} = 90^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

bbbb (ảnh 1)

a) Đúng.

\(G\) là giao điểm của hai đường trung tuyến \(BM,\;CN\) của \(\Delta ABC\) nên \(G\) là trọng tâm của \(\Delta ABC.\)

b) Sai.

Vì tam giác \(ABC\) cân tại \(A\) nên \(AB = AC,\;\widehat {ABC} = \widehat {ACB}.\)

\(M\) là trung điểm của \(AC\) nên \(AM = MC = \frac{1}{2}AC.\)

\(N\) là trung điểm của \(AB\) nên \(AN = NB = \frac{1}{2}AB.\)

Do đó, \(AN = NB = AM = MC.\)

Tam giác \(BMC\) và tam giác \(CNB\) có: \(\widehat {MCB} = \widehat {NBC}\;\left( {cmt} \right),\;MC = BN\;\left( {cmt} \right),\;BC\;{\rm{chung}}{\rm{.}}\)

Do đó, \(\Delta BMC = \Delta CNB\;\left( {c - g - c} \right).\)

c) Đúng.

\(\Delta BMC = \Delta CNB\;\left( {cmt} \right)\) nên \(BM = CN.\)

\(G\) là trọng tâm của \(\Delta ABC\) nên \(GC = \frac{2}{3}CN,\;BG = \frac{2}{3}BM.\) Suy ra: \(GB = GC.\)

\(GD = GB,\;GE = GC\) nên \(GD = GB = GE = GC.\) Suy ra: \(EG + GC = BG + GD\) hay \(BD = CE.\)

d) Đúng.

Tứ giác \(BEDC\) có hai đường chéo \(CE,\;BD\) cắt nhau tại \(G;\;\) \(G\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(EC.\) Do đó, tứ giác \(BEDC\) là hình bình hành. Mà \(BD = CE\) nên tứ giác \(BEDC\) là hình chữ nhật. Do đó, \(\widehat {EBC} = 90^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(AC = \frac{1}{2}BD.\)                               
B. \(AC = \frac{3}{4}BD.\)                    
C. \(AC = \frac{4}{3}BD.\)                    
D. \(AC = BD.\)

Lời giải

Đáp án đúng là: D

Hình bình hành \(ABCD\)\(\widehat A = 90^\circ \) nên \(ABCD\) là hình chữ nhật. Do đó, \(AC = BD.\)

Câu 2

A. \(\widehat {OAB} = \widehat {OBA}.\)      
B. \(\widehat {OAB} = 2\widehat {OBA}.\)                                    
C. \(\widehat {OAB} = \frac{1}{2}\widehat {OBA}.\)                    
D. \(\widehat {OAB} = \frac{1}{3}\widehat {OBA}.\)

Lời giải

Đáp án đúng là: A

cccc (ảnh 1)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(OA = OB.\) Do đó, tam giác \(OAB\) cân tại \(O.\) Nên \(\widehat {OAB} = \widehat {OBA}.\)

Câu 5

A. \(AD = 4\;{\rm{cm}}{\rm{.}}\)                    
B. \(AD = 6\;{\rm{cm}}{\rm{.}}\)          
C. \(AD = 5\;{\rm{cm}}{\rm{.}}\)          
D. \(AD = 10\;{\rm{cm}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hình thang có hai góc vuông là hình chữ nhật.            
B. Hình thang có hai đường chéo bằng nhau là hình chữ nhật.            
C. Hình thang cân có một góc vuông là hình chữ nhật.            
D. Cả A, B, C đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP