Câu hỏi:

10/09/2025 10 Lưu

Cho hình chữ nhật \(ABCD\) có chu vi bằng \(14\;{\rm{cm}}{\rm{.}}\) Biết rằng chu vi tam giác \(ACD\) bằng \(12\;{\rm{cm}}{\rm{.}}\) Tính độ dài đường chéo \(BD.\) (Đơn vị: cm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(5\)

Vì chu vi hình chữ nhật \(ABCD\) bằng \(14\;{\rm{cm}}\) nên \(2\left( {DC + AD} \right) = 14\;{\rm{cm}}\) nên \(AD + DC = 7\;{\rm{cm}}{\rm{.}}\)

Vì chu vi tam giác \(ACD\) bằng \(12\;{\rm{cm}}\) nên \(DC + AD + AC = 12\;\left( {{\rm{cm}}} \right).\)

Do đó, \(7 + AC = 12\) hay \(AC = 5\;{\rm{cm}}{\rm{.}}\)

Vì tứ giác \(ABCD\)hình chữ nhật nên \(BD = AC = 5\;{\rm{cm}}{\rm{.}}\) Vậy \(BD = 5\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(10\)

Tứ giác \(ABED\) có: \(\widehat A = \widehat B = \widehat {BED} = \widehat {EDA} = 90^\circ \) nên tứ giác \(ABED\) là hình chữ nhật.

Do đó, \(EB = AD = 4\;{\rm{m,}}\;AB = DE.\)

Ta có: \(EC = CB - BE = 10 - 4 = 6\;\left( {\rm{m}} \right).\)

Diện tích tam giác \(DEC\) vuông tại \(E\) bằng \(30\;{{\rm{m}}^2}\) nên

\(\frac{1}{2}EC \cdot DE = 30\) \(\)

\(\frac{1}{2} \cdot 6 \cdot DE = 30\)

\(DE = 10\;{\rm{m}}.\)

Do đó, \(AB = DE = 10\;{\rm{m}}.\) Vậy \(AB = 10\;{\rm{m}}.\)

Lời giải

bbbb (ảnh 1)

a) Đúng.

\(G\) là giao điểm của hai đường trung tuyến \(BM,\;CN\) của \(\Delta ABC\) nên \(G\) là trọng tâm của \(\Delta ABC.\)

b) Sai.

Vì tam giác \(ABC\) cân tại \(A\) nên \(AB = AC,\;\widehat {ABC} = \widehat {ACB}.\)

\(M\) là trung điểm của \(AC\) nên \(AM = MC = \frac{1}{2}AC.\)

\(N\) là trung điểm của \(AB\) nên \(AN = NB = \frac{1}{2}AB.\)

Do đó, \(AN = NB = AM = MC.\)

Tam giác \(BMC\) và tam giác \(CNB\) có: \(\widehat {MCB} = \widehat {NBC}\;\left( {cmt} \right),\;MC = BN\;\left( {cmt} \right),\;BC\;{\rm{chung}}{\rm{.}}\)

Do đó, \(\Delta BMC = \Delta CNB\;\left( {c - g - c} \right).\)

c) Đúng.

\(\Delta BMC = \Delta CNB\;\left( {cmt} \right)\) nên \(BM = CN.\)

\(G\) là trọng tâm của \(\Delta ABC\) nên \(GC = \frac{2}{3}CN,\;BG = \frac{2}{3}BM.\) Suy ra: \(GB = GC.\)

\(GD = GB,\;GE = GC\) nên \(GD = GB = GE = GC.\) Suy ra: \(EG + GC = BG + GD\) hay \(BD = CE.\)

d) Đúng.

Tứ giác \(BEDC\) có hai đường chéo \(CE,\;BD\) cắt nhau tại \(G;\;\) \(G\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(EC.\) Do đó, tứ giác \(BEDC\) là hình bình hành. Mà \(BD = CE\) nên tứ giác \(BEDC\) là hình chữ nhật. Do đó, \(\widehat {EBC} = 90^\circ .\)

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP